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EXECUTIVE SUMMARY 

The present document serves as supplementary material, offering in-depth technical details on the multi-
Unmanned Autonomous Vehicles (UAVs) swarm collaboration strategies developed and implemented 
throughout the work in T6.1 “Swarming schemes for optimised collaboration of drones” & T6.2 “Resource 
controller for autonomous drones”.   
 
It focuses on creating new methods for swarm navigation, energy-efficient path planning, and area coverage, 
making sure the drones can work together safely and effectively in real-world disaster situations. The 
solutions were used in different disaster scenarios like wildfires, earthquakes, and cyber-attacks. Feedback 
from first responders helped to adjust the methods to real needs. The results show that using UAV swarms 
can greatly improve the speed, safety, and quality of information gathered during emergencies, and can also 
support realistic training. 
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1. INTRODUCTION 

UAV swarms are emerging as a transformative technology in disaster management, offering rapid, flexible, 
and scalable solutions for a range of critical tasks. By coordinating multiple UAVs to operate collaboratively, 
swarm systems can achieve extensive area coverage, resilient communication networks, and adaptive 
mission execution, even in complex and dynamic environments. In disaster scenarios such as earthquakes, 
floods, wildfires, and industrial accidents, UAV swarms can be deployed for search and rescue, damage 
assessment, situational awareness, and supply delivery. Their distributed nature enhances system 
robustness, reduces single points of failure, and enables real-time data collection and decision-making. The 
combination of advanced autonomy, decentralized control, and cooperative behaviours makes UAV swarms 
a promising and increasingly vital tool for improving the efficiency and effectiveness of disaster response 
operations.      
 
Integrating UAV swarm technologies into PANTHEON Smart City Digital Twin (SCDT) offers a powerful 
approach to training first responders by creating highly realistic, dynamic simulations of disaster scenarios. 
By leveraging the coordinated actions of multiple UAVs, the digital twin can simulate large-scale emergencies 
with detailed real-time data on environmental conditions, structural damage, and population movement. 
This enables first responders to engage in immersive, high-fidelity training exercises that mirror the 
complexity and unpredictability of real-world events. UAV swarms contribute to enhancing situational 
awareness within the digital twin, allowing for the testing of different response strategies, resource 
allocations, and communication protocols under varied and evolving conditions. Thus, this integration can be 
a critical tool for improving preparedness, decision-making skills, and the overall resilience of urban 
emergency response systems. 
 
In this work, UAVs are integrated into three disaster scenarios: an earthquake and a wildfire, both located in 
Athens, and a cyber-attack scenario in Vienna. These scenarios present diverse conditions in which a swarm 
of heterogeneous drones is deployed to perform critical assessment tasks. In the earthquake scenario, the 
drones assess damage to buildings and infrastructure. In the wildfire scenario, they monitor fire propagation 
and provide aerial imaging. In the cyber-attack scenario, the drones assess structural damage, identify 
casualties resulting from an explosion, and measure gas concentrations in the air caused by the ignition of 
hazardous products or structures. 
 
The current document chapters can be summarized as follows: Chapter 2 provides a literature review, 
examining current approaches and methodologies for swarm and multi-UAV systems, with a particular focus 
on their application to disaster management scenarios. Chapter 3 offers a description of the swarming 
schemes, presenting the algorithmic foundations and technical implementations of the swarming strategies 
developed in this work. Chapter 4 focuses on the alignment with Pantheon use cases, detailing the 
application and integration of UAV swarm technologies into the Pantheon system’s operational scenarios. 
Finally, Chapter 5 presents the conclusion, summarizing the main contributions of the work, discussing key 
insights, and outlining directions for future research and development. 
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2. LITERATURE REVIEW 

The use of UAVs in disaster management has greatly enhanced the efficiency of emergency response, 

enabling rapid assessment, communication support, and supply delivery. This literature review highlights key 

research on UAV swarms in disaster scenarios, with a focus on critical challenges such as traversal of 

designated waypoints and effective area coverage. Efficient waypoint planning ensures UAVs reach vital 

locations—such as survivor sites or damaged infrastructure—while maximizing area coverage is essential for 

thorough situational awareness. Recent studies propose various optimization strategies to address these 

challenges under constraints like battery life, terrain, and communication limits. 

Waheed et al. [1] propose a reinforcement learning-based approach to optimize UAV placement for covering 

critical nodes in emergency networks, focusing on maximizing capacity and minimizing information delay. 

Malandrino et al. [2] propose an optimization framework for joint planning of multitask missions using a fleet 

of UAVs equipped with standardized accessories, enabling them to perform heterogeneous tasks such as 

surveillance, communication support, and parcel delivery in post-disaster scenarios. Their approach 

demonstrates that fully equipping UAVs enhances operational flexibility and efficiency, reducing the number 

of UAVs needed without compromising task quality. 

Bailon-Ruiz et al. [3] present a trajectory planning approach for fixed-wing UAV fleets to monitor dynamic 

wildfires, utilizing realistic models of terrain, fire propagation, wind, and UAV dynamics. By tailoring a 

Variable Neighbourhood Search algorithm to these models, their method enables adaptive observation 

planning that update as new fire data becomes available, enhancing situational awareness for firefighting 

operation. 

Malandrino et al. [4] propose an optimization framework for deploying UAVs to provide wireless coverage in 

disaster-stricken areas, focusing on maximizing user throughput while ensuring fairness across affected 

regions. Their simulation of a flooding scenario in San Francisco demonstrates the effectiveness of UAV-based 

networks in maintaining communication services when traditional infrastructure is compromised. 

Maza and Ollero [5] present a cooperative search strategy for multiple heterogeneous UAVs, utilizing 

polygonal area decomposition and efficient coverage algorithms. Their approach divides the search area 

based on UAV capabilities and initial positions, assigning regions to each UAV for coverage using a zigzag 

pattern that minimizes turns. 

This paper [6] introduces a multicircuit route planning method for UAVs to optimize terrain coverage, 

focusing on minimizing operational time while considering constraints like battery life and communication 

range. This approach enhances the efficiency of UAV deployments in disaster management by ensuring 

comprehensive area coverage with reduced mission durations. 

In [7], the authors propose a cooperative multitask assignment based on area segmentation. They use a 

Genetic Algorithm (GA) that considers area mapping task requirements, UAV kinematics constraints, 

resource constraints (maximum endurance and sensor capabilities), and task number ceiling constraints; and 

optimizes the task sequence based on the objective function that considers UAVs coverage path planning 

characteristics. An improved double-chromosome encoding GA with a conflict-mediation mechanism is 

proposed to perform genetic operations on the population while meeting these constraints. 
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3. SWARMING SCHEMES DESCRIPTION 

SWARM NAVIGATION 

After conducting an exhausting literature review and determining the limitations of existing solutions, a 

swarm navigation framework that enables coordinated UAV movement between Points of Interest (POIs) 

was proposed to satisfy the needs of the project. This approach ensured efficient area coverage and real-

time collision avoidance through inter-UAV communication. 

The proposed system comprises four key components which are determined by the disaster mechanisms. 

First, the area of interest must be defined, and critical Points of Interest (POIs) must be identified and 

prioritized. Next, appropriate UAVs and sensors are selected to form a robust and efficient swarm formation. 

Finally, the communication framework governing data exchange between the UAV agents and the base 

station must be established to ensure seamless information flow. 

 

Figure 1: Swarm Navigation System Architecture 

Certain POIs are prioritized based on their significance in assessing the impact and guiding emergency 

response. Additionally, the dynamic nature of a post-disaster environment imposes time constraints on the 

availability of this information. To compensate these factors, the proposed system accounts:  

(a) the coordinates of POIs  

(b) a priority-based prize value that quantifies the significance of the acquired information, and  

(c) the opening and closing times of each POI, which define the time window when the surrounding area is 

deemed a safe flight zone, ensuring that all available information is collected while minimizing the risk to the 

UAV swarm.  
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In cases where visiting all POIs is infeasible, the algorithm prioritizes those that provide the most critical 

information, ensuring an optimal balance between data acquisition and operational safety. 

The UAV swarm composition, including the number of agents and onboard specialized sensors (thermal 

camera, gas sensor, humidity sensor, LiDAR, etc), is determined using a capabilities database that catalogues 

UAV characteristics. Each UAV can carry different sensors, with flight duration and velocity dependent on its 

payload and its inherent specifications. The swarm configuration is selected as a subset of this database using 

an empirical rule that accounts for sensor heterogeneity, minimum flight duration, and minimum velocity, 

both constrained by the weakest agent. Once the UAV count is set, the swarm is organized into a spatial 

formation—structured as a polygonal shape in 2D or 3D space depending on the area of interest—to ensure 

maximum coverage with available sensors. A designated UAV at the geometric centre, chosen for its 

extended flight duration and high velocity with minimal payload, serves as a reference for trajectory 

generation and formation maintenance without carrying specialized sensors. 

 

Figure 2: UAV Agent Software Architecture 

The central UAV acts as a communication hub, maintaining strong signal links within the swarm to ensure 

reliable data transmission by minimizing the distance between agents. Implementing a communication 

bridge at central UAV, all agents can broadcast and transmit odometry, local trajectory, and heartbeat signals 

between them, each identified by a unique identify number. The ground station only transmits waypoints for 

global trajectory planning and an execution signal, with the central UAV serving as the reference. 

To maintain swarm formation, a formation similarity metric has been adapted based on the representation 

of the swarm as an undirected graph. Each vertex 𝑖 of the graph, represents a UAV with position vector 𝑝𝑖 =

[𝑥𝑖  , 𝑦𝑖  , 𝑧𝑖]. Each edge 𝑒𝑖𝑗  connects UAV Agent 𝑖 and UAV Agent 𝑗 using the Euclidean distance between 

agents. A formation similarity metric has been adapted [8] (Eq.1) as 

                                     𝑓 =  || 𝐿̂ − 𝐿̂𝑑𝑒𝑠||𝐹
2 =  𝑡𝑟( ( 𝐿̂ − 𝐿̂𝑑𝑒𝑠)𝑇( 𝐿̂ − 𝐿̂𝑑𝑒𝑠))   (1) 
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where 𝑡𝑟{ } denotes the trace of a matrix, 𝐿̂ is the symmetric normalized Laplacian of the current formation, 

𝐿̂𝑑𝑒𝑠 the counterpart of the desired formation and 𝐹 denotes the Frobenius norm. This metric is invariant to 

geometric transformations since the corresponding graph is weighted by the (absolute) Euclidean distance 

between UAVs and scaling invariance is achieved with the use of normalized graph Laplacian. 

To achieve robust collision avoidance, the proposed methodology is based on the development of a local 

submap for each UAV agent in the swarm, focused on the UAV’s immediate surroundings, significantly 

reducing computational overhead. This incrementally built Euclidean Signed Distance Field (ESDF) map [9] is 

used to compute the distance and gradient relative to nearby obstacles and is created by utilizing depth 

sensor data and GPS-based odometry. The swarm’s collective perception enhances local mapping by covering 

a broader area, while the compact map size enables fast and accurate environmental representation, even 

in dynamic conditions [10].  

Using distance and gradient information from the ESDF map, an optimization-based local trajectory 

replanning algorithm is deployed, and the essential terms are integrated into the cost function 𝐿 (Eq. 2). The 

proposed cost function also includes agent-specific terms for formation maintenance and intra-UAV collision 

avoidance based on the swarm similarity metrics. The algorithm generates a smooth B-Spline trajectory 

across sequential 3D points, leveraging the local control properties of B-Splines for real-time replanning [11]. 

𝐿𝑖 = 𝐿𝑐,𝑖 + 𝐿𝑒𝑝,𝑖 + 𝐿𝑠,𝑖 + 𝐿𝑓𝑠,𝑖 + 𝐿𝑓𝑎,𝑖  (2) 

The overall cost function is a sum of individual agent terms, comprising: a collision term (𝐿𝑐,𝑖) to penalize 

paths that intersect with obstacles, an endpoint error term (𝐿𝑒,𝑖) to maintain replanned and initial trajectory 

consistency, a soft limit (𝐿𝑠,𝑖) that constrains velocity, acceleration, and jerk to allow the use of an 

unconstrained optimization algorithm, a swarm formation similarity term (𝐿𝑓𝑠,𝑖) to preserve formation 

integrity, and a reciprocal avoidance term (𝐿𝑓𝑎,𝑖) to  prevent UAV-to-UAV collisions. 

 

Figure 3: Obstacle Avoidance and Local Re-planning 

Finally, to minimize travel costs a priority-based variant of the Traveling Salesman Problem (TSP) is 

implemented.  In this approach, each POI is assigned a prize value, and the swarm must visit a subset of 

points to maximize profit under constraints. This method allows for skipping less critical nodes, balancing the 

trade-off between travel costs and the rewards associated with visited points. The TSP used in this work is 

specifically adapted to incorporate constraints related to infrastructure importance, the necessity of the 
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required information, available flight time, and the capabilities of the onboard sensors. Furthermore, Time 

Windows (TW) are introduced, requiring each point to be visited within a specific time interval to ensure the 

feasibility of visits.  

The proposed methodology was tested in simulation experiments with different swarm sizes and was 

validated using metrics for area coverage, formation maintenance and trajectory deviation. This work also 

led to a publication in the MED 2025 conference titled: “Optimized Area Coverage in Disaster Response 

Utilizing Autonomous UAV Swarm Formations” [12] accepted on 08/04/2025.  

ENERGY AWARE COVERAGE PATH PLANNING 

To minimize the transportation costs while maintaining efficient path planning, a Multi-UAV Coverage Path 

Planning (mCPP) approach was introduced [13]. Αn energy consumption estimation based on trajectory 

generation and the novel fast energy consumption estimation algorithms are described, both leveraging the 

pen-and-paper algorithm for calculating the optimal speed per travelled distance [14]. Each part of the path 

planning algorithm is described such as the area decomposition based on Boustrophedon Cellular 

Decomposition (BCD) [15], the novel problem conversion to Multiple Set Traveling Salesman Problem (MS-

TSP) instance, and the MS-TSP solver extending the approach [16]. 

The proposed CPP algorithm is designed to plan paths for a specified number of UAVs as well as to minimize 

the number of paths (needed UAV flights) while the maximum path energy stays below a user-defined limit. 

A single planning step for a specified number of paths starts with a greedy calculation of 𝑁𝑎𝑛𝑔𝑙𝑒𝑠 best initial 

rotation angles for the input polygon fly-area. For each of those angles, an initial Area of Interest (AOI) is 

rotated by that angle and decomposed using BCD into a set of non-overlapping polygon. If the number of 

polygons is smaller than the user-defined limit (𝑁𝑚𝑖𝑛 ·  𝑁𝑝𝑎𝑡ℎ𝑠), polygons with the largest area are divided. 

For each of the resulting polygons, different back-and-forth coverage paths with distinct sweeping angles are 

generated. 

Each of these paths is then represented by a node in a weighted graph with a weight equal to the estimated 

energy consumption of a UAV following that path. By grouping all the graph nodes corresponding to the same 

sub-polygon into a set, we can generate directed edges between each pair of nodes from different sets. The 

weight of such edges is equal to the energy needed to move from the last point of the source node path to 

the first point of the destination node path. Finally, initial and end nodes that represent UAVs’ initial and end 

positions are added. 

After the transformation to MS-TSP, the instance is solved on the created graph representation. The solver 

uses Greedy Randomized Adaptive Search Procedure (GRASP) [17] with Greedy Random Search Procedure 

(GRP) for initial solution generation followed by Tabu Search (TS) [18] for searching for a better solution. UAV 

paths are then recovered from the solution by replacing solution nodes with corresponding coverage paths 

and edges with a path connecting two adjacent paths. 

The estimation of path energy consumption is based on the pen-and-paper algorithm [14]. Based on the 

UAV’s physical parameters, it can estimate the optimal speed for maximizing the flight distance and power 

consumption during either flying with such speed or in hover conditions [13]. The optimal speed then 

minimizes the energy consumption of traveling along a straight segment with a fixed distance.  

The algorithm decomposes the AOI by traversing points from left to right and creating vertical lines, with the 

rotation of the AOI affecting the decomposition result. The best initial rotation is estimated using the method 
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in [18], where the area is decomposed for each boundary segment's rotation, and the decomposition is 

evaluated with the cost function 

                                                 𝑤 =  ∑ 𝑦𝑚𝑎𝑥,𝑖 − 𝑦𝑚𝑖𝑛,𝑖
𝑚
𝑖=1                                  (3) 

where 𝑚 is the number of sub-polygons, and 𝑦𝑚𝑎𝑥,𝑖 and 𝑦𝑚𝑖𝑛,𝑖are the uppermost and lowermost y-

coordinates of the 𝑖-th segment. The best 𝑁𝑎𝑛𝑔𝑙𝑒𝑠  initial rotations are selected, and the path planning 

algorithm is run for each. After fixing the initial rotation, the AOI is decomposed again using Boundary 

Constrained Decomposition (BCD), with the condition 𝑚 ≥ 𝑁𝑚𝑖𝑛  ∙ 𝑁𝑈𝐴𝑉 , where 𝑁𝑈𝐴𝑉  is the number of UAVs 

and 𝑁𝑚𝑖𝑛  the minimum number of sub-polygons per UAV. If this condition isn't met, the largest sub-polygons 

are divided further.  

 

Figure 4: Energy Aware Area Decomposition and Path Generation 

Having the AOI decomposed into sub-polygons, multiple sweeping coverage paths are generated for each of 

them. This algorithm step is based on a statistical analysis showing that the most energy-efficient paths 

usually have sweeping lines along the longest edge of the polygon. Therefore, for the 𝑖-th sub-polygon 4 ∙

𝑚𝑖𝑛 (𝑁𝑖,𝑓𝑒𝑎𝑠, 𝑁𝑒)  sweeping patterns are generated along 4 ∙ 𝑚𝑖𝑛 (𝑁𝑖,𝑓𝑒𝑎𝑠, 𝑁𝑒) longest edges in feasible 

sweeping directions. The 𝑁𝑖,𝑓𝑒𝑎𝑠 is the number of 𝑖-th feasible polygon sweeping edges, and the 𝑁𝑒  is the 

maximum number of sweeping rotations in each sub-polygon. 

When creating sweeping paths along the chosen edge, the two possible start points are located at each end 

of that edge at the distance 
𝑠

2
 from it, where s is the sweeping step. This leads to two corresponding end 

locations that can also serve as start locations by changing each path’s direction, leading to four possible 

sweeping paths. 

After having multiple sweeping coverage paths for sub-polygons, each is assigned one graph node, where the 

weight of the node is equal to the energy needed to fly along it. All of the nodes associated with same sub-

polygon are grouped into the same set. Edges connecting each pair of nodes from different sets are added 

with the weight of an edge equal to the energy spent to travel from the last point of the sweeping pattern 

associated with the source node to the first point of the sweeping pattern associated with the destination 

node. 

Considering that the number of nodes in the generated graph may be large, and that the algorithm should 

obtain a solution in a short time just before the flight, a meta-heuristic algorithm is utilized to quickly find 
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possibly only a sub-optimal solution. Both the total energy consumption and the maximum energy spent by 

any of the UAVs are considered as a combination of cost functions for MS-TSP. The maximum energy 

consumption is used for initial cost comparison, and the average energy consumption is used in the case of 

two solutions having the same cost. 

The Greedy Random Search Procedure (GRP) is used as the initial solution generator where the solution is 

represented as a list of paths with one path for every UAV. Each path is a list of graph nodes representing the 

sweeping patterns and their ordering. Adaptive Tabu Search (TS) is then used to improve the initial solution 

using four moves that search through the solution neighbourhood. The solution neighbourhood generation 

uses randomly one of the following four moves: 

1) Random shift: randomly choose a node and move it into a random position among all paths. 

2) Best shift: Randomly choose a node. Iteratively find the best position for it and move it there. 

3) Best swap: Randomly choose a node. Iteratively find the best node to swap it with and swap them. 

4) Change direction: Randomly choose a node and replace it with a random node from the same set. 

After applying move procedures 1-3, the moved nodes are replaced with the best (minimizing the cost 

function) nodes from the same set. 

 

Figure 5: Algorithm Results for (a) 5 UAVs with 13 Convex Polygons and (b) 8 UAVs with 14 Convex Polygons 
for the same fly area 

OPTIMIZED COVERAGE PATH PLANNING (CPP) LEVERAGING DRONE CAPABILITIES 

The objective of our proposed method is to find a path for drones that cover the whole area of interest 

efficiently taking into consideration the drone capabilities. The algorithms that make up our method take as 

input the area of interest which will be surveyed. This area must be known and limited by a polygon. 

Other areas can be defined in the mission like areas of no interest inside the polygon, and restricted areas 

due to the presence of other airspace users, such as evacuation helicopters or water bombers. The latter can 

be outside or intersecting with the main polygon. Indeed, these kinds of areas are considered in the proposed 

method. 

To effectively cover the polygon of interest, we employ a two-step method: first, we decompose the area 

into sub-zones with defined proportions, and then we plan drone trajectories for non-convex regions. 
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The decomposition process utilizes the number of available drones and their maximum coverage 

area/surface to create partitions of suitable sizes and account for any existing holes within the area of 

interest. These partitions are uniquely non-convex. 

Trajectory planning considers the non-convex nature of the partitions and aims to propose short paths from 

numerous possibilities. It ensures complete coverage of the area while avoiding obstacles, prohibited zones, 

and partitions assigned to other drones. 

 

Figure 6: Area Decomposition and Path Planning Showcase 

For the functioning of the algorithms, we consider the maximum flight altitude, the sensor characteristics 

(Field of View (FoV), resolution), the needs of mapping and detection tasks (overlapping, ground sampling 

distance, the target object size), the drone endurance, and the initial position from which it takes off 

(generally far from the target area). Thanks to this data, we calculate many parameters needed by both steps:  

● The drone capability in terms of the area it can cover, which is used by the Area decomposition step 

to partition the area to subareas.  

● The drone flight altitudes, drone sweep separation distance, and distance between camera shots are 

used for flight planification. 

● Camera pan angle for each drone. 

A decomposition algorithm is developed to address the problem of dividing the target area among multiple 

UAVs. It takes as input the perimeter of a polygon that defines the area of interest, which may include holes 

and no-fly zones, and a list of available drones, each with the surface area it can cover. The output is a list of 

perimeters corresponding to the resulting partitions. 

The algorithm extends the bottom-up approach detailed in [19]. Its objective is to generate partitions that 

best match the UAVs' capabilities while maximizing compactness. The UAV capabilities are represented as 

area requirements, that is the proportion of the total area to be allocated to each drone. The metric of 

compactness for a polygon P, denoted as 𝐶(𝑃), is defined as the ratio of the square root of its area to its 

perimeter:  

                                                           𝐶(𝑃) =
√𝐴𝑟𝑒𝑎(𝑃)

𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟(𝑃)
       (4) 

The original bottom-up algorithm begins by generating a triangular mesh using constrained Delaunay 

triangulation with additional Steiner points. This mesh is transformed into a hierarchical region-adjacency 

graph, where nodes represent simple polygons or subgraphs. The algorithm starts with the smallest area 

requirement and iteratively merges neighbouring chunks, prioritizing compactness, until the desired area is 

reached. Any remaining small chunks are merged, and a final adjustment phase ensures compliance with 
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area constraints. This process is repeated for each remaining requirement using the existing graph until all 

the requirements are met. Finally, a post-processing step smooths boundary lines, while maintaining area 

constraints. 

However, we observed that processing area requirements in ascending order can negatively impact the 

compactness of later partitions. To address this, the implemented version adopts a balanced splitting 

strategy. The list of requirements is initially divided into two subsets such that the difference in their total 

areas is minimized. The polygon is then split into the two corresponding subregions. This process is applied 

recursively: each subregion is further divided based on a balanced split of its associated requirements. This 

strategy results in more uniformly compact partitions. 

In addition, the initial triangulation is performed only on the border points of the polygon. We observed that 

this significantly reduces computation time, without compromising the quality of the final results. 

 

Figure 7: Decomposition of a polygon with one hole in 6 partitions with area requirements 18%, 14%,9%, 18%, 
8%, and 33%. 

The bottom-up algorithm for compact workspace decomposition [19] was compared against two 

approaches: an improved version of the Hert and Lumelsky algorithm for non-convex polygon decomposition 

(referred to as IHL) [20] and the DARP algorithm [21]. DARP, notable for providing an open-source 

implementation, is based on cellular decomposition and requires representing polygons as a collection of 

grid cells. Since DARP also requires UAV initial positions without a provided selection method, we randomly 

generated these positions within the polygon and chose the best result based on compactness. The 

evaluation criteria included normalized compactness of the partitions, the number of tracks in the generated 

flight plans, and algorithm execution time. All methods were tested on the same set of 100 randomly 

generated polygons with 4 to 50 vertices, divided among 2 to 10 UAVs with equal area assignments. 

Maximizing the compactness of partitions is a standard quality measure in polygon decomposition. To ensure 

fair comparison across polygons of different sizes but similar shapes, compactness was normalized to a range 

from 0 to 1, with 1 representing maximum compactness. This normalization simplifies result interpretation, 

with higher values indicating better performance. Figure 8 shows that the Bottom-up algorithm consistently 

outperforms both IHL and DARP in terms of compactness, and it also scales better with the number of 

partitions compared to IHL, highlighting its efficiency and robustness for multi-UAV workspace division. 
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Figure 8: Normalized compactness vs number of parts for the bottom-up, IHL and DARP algorithms 

For each partition created by the decomposition step, the planning algorithm transforms the partition into a 

grid of points, spaced by fixed horizontal and vertical distances. These distances are determined by the 

camera's field of view, the flight altitude, and the overlap between consecutive photo shots. The points 

indicate the paths the drones will follow and specifically mark the locations where the onboard camera 

captures photos. A grid is generated for a specific orientation and the algorithm calculates for each partition 

different orientations. Each point in the grid is associated with a Boolean value indicating whether the drone 

can pass through that point a “pass point” or not. A “no-pass point” is one that lies outside the polygon or 

within a fixed obstacle inside it. For each orientation, some extra points are calculated for small zones that 

are not covered by shots and associated with their nearest point in the corresponding grid. These points will 

be added to the trajectory during the next stage “Path calculation”. A grid and its extra points help the 

algorithm to systematically plan paths, ensuring that the entire area is covered efficiently. 

 

  

Figure 9: Point grid generated for a partition with the corresponding coverage 

After constructing the grids for various orientations and their corresponding extra points, the next stage is to 

create the trajectories. A trajectory starts at the drone's initial position and continues to the partition 
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entrance. If any no-fly-zone is found between these two points, the algorithm generates a path that avoids 

that zone by flying over its outer contour following the shortest side of this area. The entry point for the 

partition is situated on the first line of the grid. The selection of this point, whether at the beginning or end 

of the line, is deferred until the final trajectory is calculated, ensuring the shortest path. The trajectory is 

constructed using a back-and-forth pattern. When the algorithm encounters one or more no-pass points, it 

makes a detour to reach the next “pass point”. Once all pass points and extra points have been visited, the 

point corresponding to the drone's initial position is added as the end point. To reach the end point, the 

external no-fly zone, if it exists, is avoided in the same way as before.  

 

Figure 10 Generated trajectory for a partition avoiding a no-fly zone 

This approach helps avoid fixed obstacles and no fly zones but does not prevent flying over neighbouring 

partitions when accessing its own zone or when moving from one grid point to another that crosses segments 

of an adjacent partition. The solution for the first problem is to use an altitude different from those of the 

scan when trying to reach its partition. For the second problem, the algorithm implements a mechanism that 

calculates an alternative route when the initial route crosses segments of neighbouring zones. By precisely 

following the outline of the prohibited area, the drone can continue its flight without violating any 

restrictions, ensuring both safety and efficiency. 

 

Figure 11 Final drone trajectories for scanning the entire area 
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To compare our path planning algorithm with existing methods, Fields2Cover [22], an open-source CPP 

library originally developed for agricultural vehicles (with adaptations made for UAV applications) is 

employed. Fields2Cover offers a comprehensive framework for generating coverage paths, developing new 

techniques, and benchmarking state-of-the-art algorithms. It supports path generation for non-convex areas 

with obstacles, utilizing various sweep patterns and turn models. 

For the comparison, a polygon including an internal hole, is used as a test environment. The same UAV model 

was employed across all experiments, using the boustrophedon pattern for sweeps, with simple straight-line 

segments connecting the ends and starts of sweep lines. Notably, some differences exist between the 

methods compared. One key difference concerns the starting point of the sweep lines: in all methods except 

ours, each sweep line starts at a distance equal to half the separation distance between two consecutive 

shots. In contrast, in our algorithm, this distance is variable and can range between zero and the full shot 

separation distance. Additionally, because boustrophedon decomposition splits the area into multiple cells, 

UAVs following such paths may temporarily exit the main coverage area when transitioning between 

adjacent cells. 

Metrics 

Our proposed 
CPP 

Brute Force Single 
orientation 
(π/2) 

Boustrophedon 
decomposition + 
Brute Force 

Flight time (s) 2721 3098 3020 3363 

Flight distance (m) 40820 46482 45309 50445 

Number of turns  -- 54 56 58 

Table 1: Comparison of the path planning methods 

 

    

Figure 12 Compared path planning methods - from left to right: Our method, Brute force, Single orientation, 
Boustrophedon decomposition + Brute force 
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4. PANTHEON USE CASES ALIGNMENT 

Based on the end-user requirements of the PANTHEON platform and the feedback provided by first 

responders during the defined use case scenarios, the developed methods are carefully modified or, in some 

cases, rejected to better align with the practical needs and constraints of real-world disaster response. First 

responders’ input is critical in ensuring that the algorithms and swarm strategies are not only technically 

sound but also operationally viable in high-pressure, dynamic environments. For instance, factors such as 

real-time decision-making, ease of use, adaptability to various disaster scenarios, and the ability to handle 

large-scale emergencies are incorporated into the refinement process. In Table 2, the mapping of UAV Swarm 

methods along the Use Cases will be displayed. 

Method Use Case 

Swarm Navigation --------- 

Energy Aware Path Planning ATTICA WILDFIRE 

Area Decomposition and Path Planning ATTICA EARTHQUAKE, VIENNA CYBER-ATTACK 

Table 2: Swarming Methods and Use Case Alignment 

Since the current deliverable is a demonstrator, the implementations, architectures, and UAV usage within 

the PANTHEON project can be explored through the following links. 

SWARM NAVIGATION DEMO 

Swarm Navigation algorithm implementation can be described in PANTHEON_D6_1_SWARM_NAVIGATION 

on PANTHEON Zenodo. 

ATTICA WILDFIRE SCENARIO DEMO 

The Attica wildfire Scenario can be described in PANTHEON_D6_1_UAV_WILDFIRE_MONITORING video on 

PANTHEON Zenodo. 

ATTICA EARTHQUAKE AND VIENNA CYBER-ATTACK SCENARIO DEMOS 

The Attica earthquake and the Vienna cyber-attack Scenarios can be described in 

PANTHEON_D6_1_UAV_EARTHQUAKE_CYBER_ATTACK video on PANTHEON Zenodo. 

https://doi.org/10.5281/zenodo.15358240
https://doi.org/10.5281/zenodo.15358240
https://doi.org/10.5281/zenodo.15358240
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5. CONCLUSION 

This deliverable has presented the design, implementation, and evaluation of collaborative swarming 

schemes for UAVs to enhance disaster management operations within the PANTHEON platform. Through an 

in-depth exploration of swarm navigation, energy-aware coverage path planning, and advanced area 

decomposition techniques, the work demonstrates significant advancements in operational efficiency, 

adaptability, and resilience. The alignment of these methods with real-world disaster scenarios, shaped by 

end-user feedback, highlights their practical relevance and readiness for deployment. 
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6. LIST OF ABBREVIATIONS 

 

Abbreviation Meaning 

UAV Unmanned Autonomous Vehicles 

SCDT Smart City Digital Twin 

GA Genetic Algorithm 

POI Points of Interest 

ESDF Euclidean Signed Distance Field 

TSP Traveling Salesman Problem 

TW Time Windows 

CPP Coverage Path Planning 

BCD Boustrophedon Cellular Decomposition 

MSTSP Multiple Set Traveling Salesman Problem 

AOI Area of Interest 

GRASP Greedy Randomized Adaptive Search Procedure 

GRP Greedy Random search Procedure 

TS Tabu Search 

FOV Field of View 

IHL improved Hert – Lumelsky Algorithm 
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