PANTHEON

Community-Based Smart City Digital Twin Platform
for Optimised DRM operations and Enhanced Community

Disaster Resilience

D4.3

ENHANCED INTELLIGENCE & SELF-ADAPTIVE SIMULATIONS

- The project has received funding from the European Union’s Horizon Europe programme under
Grant Agreement N°101074008.

(I

PANTHEON D4.3

DOCUMENT INFO

Deliverable Number D4.3

Work Package Number 4 Design and Development of a Smart City Digital Twin for
and Title Community DRM

Lead Beneficiary SIMAVI
Due date of deliverable 28/02/2025

Deliverable type! OTHER
Dissemination level? PU
Author(s) lacob Crucianu (SIMAVI); Otilia Bularca (SIMAVI)
Internal reviewer(s) Mike Karamousadakis (THL), Anna Tsabanakis (THL)
Version - Status 1.0 Final

TASK ABSTRACT

The deliverable incorporates the results of Task T4.3-Enhanced Intelligence & Self-adaptive Simulations re-
lated to Community Disaster Management Models. According to the GA (PANTHEON - Consortia, 2023), this
task investigates the development and integration of Artificial Intelligence algorithms to provide the simula-
tion models with the capability of self-adaptation. Self-adaptation allows the model to adjust relevant pa-
rameters based on the real data received and the evaluation of its performance against goals set in the dif-
ferent scenarios. Furthermore, this task explores Machine Learning methods and approaches to provide the
simulation models with the capability of monitoring their behaviours and collecting the needed data and
information to have sufficient situational awareness. Also, the task investigates Machine Learning ap-
proaches to analyse this data and provide the simulation.

The main focus of this deliverable is on Artificial Intelligence algorithms that provide simulation models with
the capability of self-adaptation based on the statistical models that are described in D4.1.

! please indicate the type of the deliverable using one of the following codes:
R = Document, report

DEM = Demonstrator, pilot, prototype, plan designs

DEC = Websites, patents filing, press & media actions, videos

DATA = data sets, microdata

DMP = Data Management Plan

ETHICS: Deliverables related to ethics issues.

OTHER: Software, technical diagram, algorithms, models, etc.

2 please indicate the dissemination level using one of the following codes:
PU = Public
SEN = Sensitive

——
Page 1 of 76

(I

PANTHEON D4.3

REVIEW HISTORY

Version Date Modifications Editor(s)

0.1 11/11/2024 First draft. TOC lacob Crucianu (SIMAVI);
Otilia Bularca (SIMAVI)

0.2 15/11/2024 General approach lacob Crucianu (SIMAVI);
Otilia Bularca (SIMAVI)

0.3 04/02/2025 Wildfire use case lacob Crucianu (SIMAVI);
Otilia Bularca (SIMAVI)

0.4 05/02/2025 Earthquake use case lacob Crucianu (SIMAVI);
Otilia Bularca (SIMAVI)

0.5 07/02/2025 Heatwave use case lacob Crucianu (SIMAVI);
Otilia Bularca (SIMAVI)

0.6 08/02/2025 Man-made disaster lacob Crucianu (SIMAVI);
scenario Otilia Bularca (SIMAVI)
0.7 14/03/2025 Remarks on scenarios Mike Karamousadakis

0.8 19/03/2025 Details for an earthquake lacob Crucianu (SIMAVI);
scenario Otilia Bularca (SIMAVI)

0.9 21/03/2025 Details for heatwave lacob Crucianu (SIMAVI);
scenario Otilia Bularca (SIMAVI)

0.10 27/03/2025 Reformatting, Rewriting lacob Crucianu (SIMAVI);
formulas Otilia Bularca (SIMAVI)
1.0 02/04/2025 Final version Anna Tsabanakis (THL)

DISCLAIMER

The document is proprietary to the PANTHEON consortium members. No copying or distributing, in any form
or by any means, is allowed without the prior written agreement of the owner of the property rights.

Funded by the European Union. Views and opinions expressed are, however, those of the author(s) only and
do not necessarily reflect those of the European Union or European Commission. Neither the European Union
nor the granting authority can be held responsible for them.

——
Page 2 of 76

(I

PANTHEON D4.3
TABLE OF CONTENTS
LIST OF FIGURES ...ttt ettt et et se e s e s e e et e s me e e n e e saneeneesmneennee 4
LIST OF ABBREVIATIONS ...ttt sttt ettt ettt st sat e et esat e s be e s ateeabeesaeeebeesaneebeeenneenees 5
EXECUTIVE SUMMARY ...ttt ettt ettt ettt ettt et st e sat e st esaeesabeesaeeeabeesnseebeesaneeneesnneennee 6
R [01 o T [0 T o ISP PR PRPTR 7
Y A O V=T V11 OO PP PP PP PPN 7
1.2 Deliverable STrUCTUIEcoiiiiieeee e s s 8
D 1= Y=Y = 1 o] o] o =Tl s WU 9
D R O 1V =T o VT OO PO PPPTTPPTTN 9
B B o Yol =11 T V=4 = [1Y SR 10
3. Al enhanced Self-Adaptive SIMUIGTIONScoocciiiiiiiii e e e e e e e seannes 14
Y A O 1V =T o VT PP PP PPPTPPTT 14
3.2 Al Methods and Algorithms for Self-Adaptive Simulationsccccovvveeeeiieicccciiiieeeeeee, 14
3.3 Stochastic Wildfire Models..........oouiiiiiiieieeeee e s 20
3.4 Self-Adaptive Earthquake MOAEIS........eeiiii i 25
3.5 Self-Adaptive HEatwave MOdEISoeeeiiiiieeeeeee e e e e e e e e 49
3.6 Self-Adaptive Man-made disaster MOUEIScveeeeeieeiiiiiiireeeeiee e e e e e 66
4. Conclusions and fUTUIE WOTKcooiuuiiiiiiiiiieeeiee ettt e s e 74
5 REFEIENCES .. s s 75

Page 3 of 76

(I

PANTHEON D4.3

LIST OF FIGURES

Figure 1 Processing floW @pProaChc..euiiiiiii ittt e e e e e st e e e e s s b re e e e e e s anraaee s 10
Figure 2 The functional view of the PANTHEON archit@Ctureccccoeeuiieiiiiiiciieeee et 12
Figure 3 Data monitoring and visualiSatioNeeeeieiiiiiiiii e 13
Figure 4 Wildfire simulation use-cases (@S iN D3.6) ...ccccueeieiiiieicieie et seee et e e et e et e e e snre e e s eaeeeeneeas 21
Figure 5 Wildfire SIMUIQTIONooiii e e et e e e e et e e e e e e e abe e e e e e e e abaeeeeeeeeanraneeas 23
Figure 5 Earthquake simulation use cases (8S N D3.6)ueeiiieeiiiiiiieeeeiiieee et e e e et e e e e e e irre e e e e e e eareeeeas 27
Figure 6 Road NetWOrk repreSeNtationcccciiiiiiiiiiiiiiee e e e e e e e e ae e e e e e e abree e e e e e e ennraeeeas 32
Figure 7 Paths between tWo Points ON the MapP e e e e rre e e e e e e eareeee s 35
Figure 8 Independent Paths between two points 0N the Mapceoeeveiiiiiiii i 36
Figure 9 Queue length variation dUring trialS..........ceooiiiiiiie i e e e e e e araee s 43
Figure 10 Queue length after RLMethod 1eeiiiiiiiieee e e eerrre e e e e aarae e 47
Figure 11 Intersections with the heaviest traffiC.......ccccuiiiiiiicc e 48
Figure 12 Heatwave simulation use cases (aS 1N D3.6)ueieeeieiiiieiieeiiiiieee e e errtee e e e e erre e e e e e searre e e e e e s enraeee s 50
Figure 13 Graph representation of a critical roULEeuviiiii i e 54
Figure 14 All paths and independent paths between two NOdEsuveeiiiiiciiiiii i, 57
FIUIe 15 QUEUE TENEEN ..vviiiiii e e e e e e st e e e e e s s bt eeeeeessnbbeeaeeeessrreeeeas 61
Figure 16 Adapted qUEUE IENGEN(1).....cciiiiiieiiie ettt et e e e e e e e ere e e e rat e e e stteeeesreeesnseeeenneeas 65
Figure 17 Man-made disaster simulation use cases (aSiN D3.6) ...cc.ccevciiiieieieiiiiiieee e e e 66
Figure 18 Gas spread SIMUIGTION ... e e e e e s e e e eeeaaaaaaeeeeeeessessanannnns 71
Figure 19 Best routes t0 avoid QAMAEESuuuiiiiiiiiiiiiieieeee e ee e e e e e ce et e e re e e e e eeeeeeeaaaaaaeeeeeesssasaanannns 72
Figure 20 Queue lengths after and before self-adaption ..., 73

——
Page 4 of 76

(I

PANTHEON

LIST OF ABBREVIATIONS

Abbreviation Description

Al Artificial Intelligence

API Application Programming Interface
CBDRM Community-based Disaster Risk Management
csv Comma Separated Values

DAG Directed Acyclic Graphs

FR Functional Requirement

GIS Geographic Information System
HTML HyperText Modeling Language

IT Information Technology

IUC Intended Use and Classification
JSF Java Server Faces

JMS Java Messaging System

JSON JavaScrip Object Notation

LAT Latitude

LONG Longitude

LPDM Lagrangian Particle Dispersion Model
LSTM Long Short-Term Memory

ML Machine Learning

NFR Non-functional Requirement(s)

RL Reinforcement Learning

SCDT Smart City Digital Twin

UAV Unmanned Aerial Vehicle

D4.3

Page 5 of 76

(I

PANTHEON D4.3

EXECUTIVE SUMMARY

Background Goals

To enable the definition and usage of Digital [This Deliverable aims to describe the Conceptual
Twins, the Conceptual models are analysed and |\Vodels used so that the development of individual
presented in this deliverable.

The conceptual models will focus on the
management of multi-hazards and critical system
interactions, and they will be part of SCDT

components can take place in WP4, WP5 and WP6
along with the integration of the platform in WP7.
Specifically, the work presented here builds upon

developments. the work done in D2.4, D3.1, D3.2, D3.3, D3.4 and
Systems simulating multi-hazards are very |D3.6, by further specifying (i) the necessary system
complex, with numerous interacting [requirements to fulfil the user requirements

components. The conceptual model simplifies |described in D3.2 and D3.6 and (ii) the technical
these complexities by focusing on the key

elements and their relationships, allowing us to
grasp how the system functions without getting
overwhelmed by every detail.

components that participate in the architecture
along with the sequence diagrams of their|
interconnection after analysis on (a) the existing
technological landscape (D2.4 & D3.1) (b) the
conceptual model of the SCDT (D3.3), (c) the data
delivery schemes in D3.4 and (d) the definition of
data in D4.1.

Approach and course of action

Utilise work achieved in previous work packages and previous tasks:
e WP2 PANTHEON Approach for Building Disaster-Resilient Communities
e WP3 PANTHEON Requirements, Participatory Design Process and Pilot Use-Cases
Specifications
First, the theoretical background is presented for the models considering the specific scenarios and
use cases. Next, the SCDT as the main system approach is described, and the conceptual models are
presented.

Findings and results

Four categories of models are described and proposed to be used in PANTHEON:
e Wildfire models
e Earthquake models
e Heatwave models
e Man-Made Disaster models

Impact Planned dissemination and exploitation

Conceptual models for multi-hazard |Public.
management are analysed and the most
appropriate for the use cases in Pantheon are
proposed. These models set the groundwork for
the technical development of the PANTHEON
platform in WP4, WP5, WP6 and WP7.

Page 6 of 76

(I

PANTHEON D4.3

1. INTRODUCTION

1.1 OVERVIEW

The current deliverable, D4.3 — Enhanced Intelligence & Self-Adaptive Simulations, presents the results of
the research and development conducted in the corresponding task (T4.3). The work focused on exploring
Artificial Intelligence (Al) and Machine Learning (ML) algorithms to enable self-adaptation in disaster
simulation models. By integrating these techniques, the simulation models can dynamically adjust their
parameters based on real-time data and continuously evaluate their performance against predefined goals.

The work presented in this document builds upon the findings and methodologies anticipated in 74.1 Big
Data generation and harvesting where the core data models and integration mechanisms for simulation
models are defined and on T4.2 Analysis and representation of collected data & Conceptual Models that
develops the technical framework and software architecture for executing these simulations. To
demonstrate the proposed techniques and methods, the outcomes of D3.6 Use Case Scenarios where
considered, mainly the list of use cases and real-world disaster scenarios, that provide essential requirements
for developing self-adaptive simulations.

Moreover, T4.3 investigates the development and integration of Al-driven self-adaptation mechanisms in
simulation models for disaster risk management (DRM) and the objectives include:

e Developing Al-driven self-adaptive mechanisms that enable simulation models to autonomously
adjust their parameters based on real-world data;

e exploring ML techniques for real-time data analysis and decision-making, allowing models to
determine when and how to adapt;

e optimizing disaster response strategies by integrating reinforcement learning, anomaly detection,
and predictive analytics into simulations;

The proposed approach to achieve these objectives integrates graph theory, queue theory, and statistical
modelling for a mathematical foundation for self-adaptive simulations:

Graph Theory is used for network-based disaster modelling, particularly in evacuation planning and
emergency response routing and depicts road networks, infrastructure dependencies, and resource
distribution as nodes and edges, enabling path optimization and rerouting strategies.

Queue Theory is applied to model traffic congestion, hospital triage systems, and emergency response
bottlenecks while simulating queue dynamics in evacuation scenarios, medical resource allocation, and
transportation delays.

Statistical Modelling uses Poisson, Weibull, Pareto, and Exponential distributions to model disaster event
frequencies, resource demands, and emergency response times.

Following this approach, the current deliverable extends the capabilities of static simulation models into
dynamic, adaptive systems that evolve alongside changing disaster scenarios, improving the effectiveness of
disaster management strategies.

—
Page 7 of 76

(I

PANTHEON D4.3

1.2 DELIVERABLE STRUCTURE

The document titled “D4.3 — Enhanced Intelligence & Self-adaptive Simulations” is part of Work Package 4,
activities focus on the Design and Development of a Smart City Digital Twin for Community Disaster Risk
Management (DRM) and explores the integration of Al and ML algorithms for self-adaptive simulation models
to improve disaster resilience.

The document is structured into two main sections: one introducing the general approach and another one
presenting the Al-enhanced self —adaptive simulation models.

The general approach section explains the methodology for designing Al-enhanced self-adaptive simulations
and describes the processing flow for real-time monitoring, adaptation, and decision-making.

Next, the Al-Enhanced Self-Adaptive Simulations section provides an overview of the Al techniques used to
enhance simulations. The deployed methods and algorithms describe statistical models, graph theory, queue
theory, and reinforcement learning approaches.

To demonstrate the proposed models, PANTHEON use case scenarios are used and the proposed simulation
covers detailed simulations covering different disaster scenarios: (i) wildfire models, (ii) earthquake models,
(iii) heatwave models and (iv) man-made disaster models.

Overall, the document presents a conceptual model based on: (i) mathematical models for Al-driven
adaptation, (ii) graph-based representations for transportation and disaster management, (iii) queue theory
simulations for optimizing response times and traffic management and (iv) REST APl descriptions for
integrating the simulation system with external platforms.

Along the way, several academic papers, software tools, and relevant frameworks are referred to.

——
Page 8 of 76

(I

PANTHEON D4.3

2. GENERAL APPROACH

2.1 OVERVIEW

The complexity and frequency of disasters—both natural and man-made—have highlighted the need for
robust, adaptive simulation models capable of supporting real-time decision-making. Simulation models for
scenarios such as wildfires, earthquakes, heatwaves, and man-made disasters are essential tools for
predicting disaster progression, assessing risk, and aiding response efforts. However, these models must
operate in highly dynamic environments where conditions can shift unpredictably due to factors like changing
weather, structural vulnerabilities, and human behaviour. Traditional static simulation models struggle to
keep pace with these rapid changes, often requiring manual adjustments and recalibration to maintain
accuracy.

The current approach proposes exploring the role of Al in enhancing the adaptability of the conceptual
simulation models, presented in D4.2 (PANTHEON Consortia, 2024) for various types of disasters. By
incorporating self-adaptive mechanisms, Al-driven simulation models can automatically adjust parameters,
refine predictions, and improve their responses based on real-time data. Self-adaptive simulations use
advanced Al techniques—including Bayesian optimization, reinforcement learning, and anomaly detection—
to modify key parameters dynamically, thereby allowing simulations to reflect the latest environmental,
structural, or contextual changes. This adaptability transforms simulations from static tools into dynamic
systems capable of evolving alongside the situations they model.

Each type of disaster presents unique modelling challenges, requiring specialized approaches to adaptation.
For instance, wildfire simulations need to account for changing wind conditions, fuel loads, and moisture
levels, while earthquake models must respond to tectonic shifts and evolving aftershock patterns. Similarly,
heatwave simulations need to incorporate fluctuations in temperature, humidity, and urban heat island
effects, whereas models for man-made disasters, must adjust to varying parameters specific to the disaster
considered.

This section includes a comprehensive overview of Al methods and algorithms that enable self-adaptation in
these simulation models. It details how specific Al techniques are applied to each disaster type, describing
the underlying models, adaptive workflows, and example scenarios where self-adaptation enhances
predictive accuracy and operational utility. Additionally, it addresses key implementation considerations,
including data integration or real-time processing constraints.

2.1.1 KEY CHARACTERISTICS OF AN EFFECTIVE SELF-ADAPTATION MECHANISM

Self-adaptive mechanisms describe the capacity of a system to change its behaviour under conditions that
can occur at runtime. Several characteristics are relevant to demonstrate its efficacy:

e Real-time responsiveness refers to the capability of the mechanism to make adaptations as soon
as relevant data indicates a need for change, while also ensuring that the simulation remains accu-
rate and relevant.

e Autonomy and minimal human intervention reflect the ideal situation when self-adaptation re-
quires minimal human oversight, relying on Al to detect, decide, and execute changes autono-
mously.

e Contextual awareness represents the situational awareness that the system needs to adapt based
on both internal performance metrics and external conditions (e.g., environmental factors or oper-
ational changes).

——
Page 9 of 76

(I

PANTHEON D4.3

e Incremental and controlled adjustments suggest that adaptations should be incremental and
controlled to prevent over-adjustment or instability, especially in complex systems where multiple
parameters interact.

e Traceability and rollback capability states that every adaptation should be logged, allowing for
post-analysis, traceability, and rollback in case an adaptation leads to suboptimal results.

2.1.2 PERFORMANCE FRAMEWORK

During the process of elaborating the Al-driven self-adaptive simulations, a performance framework was
considered. First, the critical KPIs for the simulations are identified. These refer to efficiency, accuracy,
processing speed, resource consumption, and other domain-specific metrics. Next, parameters that
represent the model’s state, such as input-output relationships, parameter values, and intermediate states
are defined and finally, the thresholds and acceptable ranges for each metric to recognize when the model’s
performance deviates from expected behaviour were established.

2.2 PROCESSING FLOW

The Al-driven self-adaptive simulation framework follows a structured process flow applicable to all four
disaster scenarios: wildfire, earthquake, heatwave, and man-made disasters. This approach ensures real-time
monitoring, adaptation, and decision-making, optimizing evacuation, resource allocation, and emergency
response.

A stepwise approach is proposed for the processing flow as shown in the figure below.

Step 1
*Data Collection and Initial
Monitoring
Step 2
Step 6 , , ,
*Simulation of Disaster
* Decision, Prediction, Spread valid for Wildfire
and Continuous and Man-Made Disaster
Learning Simulations:
Step 5: Step 3
-Auto-AdaptNe *Transport Infrastructure
Mechanisms for Representation
Capacity Optimization P
Step 4

* Queue Simulation for
Traffic and Emergency
Services

Figure 1 Processing flow approach

——
Page 10 of 76

(I

PANTHEON D4.3

Step 1: Data Collection and Initial Monitoring

The system continuously monitors and collects real-time data from sensors, weather stations, infrastructure
reports, and emergency call logs. Data is stored in a specific storage system, and for our system is exported
in csv or JSON format, used as input for simulation.

Additional manual input is entered to characterize specific environmental conditions (e.g., fire intensity, toxic
gas properties, infrastructure resilience). Some input is interactive during the simulations.

Step 2: Simulation of Disaster Spread valid for Wildfire and Man-Made Disaster Simulations:

Fire or toxic gas dispersion models simulate how hazards spread based on wind speed, temperature, and
terrain. Impact assessments determine how infrastructure, roads, and buildings are affected. The results
influence traffic flow and emergency response planning.

Step 3: Transport Infrastructure Representation

The road network is modelled as a graph, where nodes represent intersections, and edges represent roads,
with attributes like capacity, length, and congestion levels. Shortest paths and independent paths are
calculated to optimize evacuation and emergency response. Multiple scenarios are simulated, where one or
more roads or intersections are removed to test resilience and re-routing strategies.

Step 4: Queue Simulation for Traffic and Emergency Services

M/M/c queue models simulate congestion at intersections (traffic flow under evacuation conditions),
hospitals and emergency centres (patient intake rates during a disaster event).

Step 5: Auto-Adaptive Mechanisms for Capacity Optimization

Real-Time Reconfiguration of Nodes and Edges: Al dynamically modifies node capacities (e.g., increasing
lane usage at key intersections). Edges (roads) are adjusted to reflect lane reassignments and emergency-
only routes.

Queue Length Reduction Strategies: Rule-Based Adjustments modify road priorities and hospital intake
distributions. Reinforcement Learning (RL) Algorithms learn from past scenarios, improving future response
efficiency.

Step 6: Decision, Prediction, and Continuous Learning

Scenario-Based Decision Making: Al recalculates the best evacuation paths, hospital capacities, and
emergency response strategies based on changing conditions.

Feedback and Learning: The system stores optimized configurations for road networks and emergency
response plans to improve preparedness.

2.2.1 WORKFLOW OF THE SELF-ADAPTATION MECHANISM

The workflow design presented below starts from the KPI and thresholds definition, continues with data
collection and monitoring, adds a behavioural and performance analysis, launches the decision process,
executes the commands, refines, evaluates and continues in feedback loops.

1. KPIs and thresholds definition for model prediction accuracy establish what “success” looks like for
the simulation and set acceptable error bounds for predictions.

—
Page 11 of 76

(I

PANTHEON D4.3

2.

2.2.2

The data collection and monitoring mechanism begins with monitoring real-time inputs and the
simulation’s internal performance metrics. The data collected reflects the current state and any
relevant environmental or contextual factors influencing the simulation.

The behavioural and performance analysis module evaluates the monitored data. It assesses
whether the current model settings meet the simulation goals or if performance is deteriorating due
to external changes. The analysis might involve comparing historical trends, running predictive
models, or using situational awareness to understand external impacts.

The decision process launches when analysis identifies deviations from expected outcomes or
recognizes an opportunity for improvement, the decision-making module evaluates options for
adaptation. The module uses optimization or machine learning techniques to decide the type and
extent of adaptation, balancing different priorities to avoid over-adjusting.

The execution and update step is active after a decision is made, and the adaptation execution
module implements the changes within the simulation model. This could involve tuning specific
parameters, switching between model configurations, or updating underlying decision algorithms to
reflect new priorities.

Evaluation and Feedback Loop: After adaptation, the mechanism continues to monitor the
simulation to evaluate whether the adjustments yield the desired results. This forms a feedback loop,
where the system continually learns from its adaptations, improving future decisions and
adaptability.

PLACE IN THE OVERALL PANTHEON ARCHITECTURE

The algorithms used for the self-adaptive simulation process are part of the overall architecture (Figure 2 The
functional view of the PANTHEON architecture) and cover Data Analysis for ML algorithms, Machine Learning
Models and simulation Models.

/%_

Operational

Planning Units,
Virtual Decision Support
Representation Generator
training tool

d i iai i ~
p Smart City Digital Twin .
i \
1 selected swarming scherme '
1 Resource controller ' Satellite & Satallife & Street
' User for autonomous —n{ Swarming schemes | Street Data Data
Management drones T . Aggregator (Copernicus,

Disaster/ & OpenMap
. i Usage !
sloctod swarming scherfe { scenarios !
IC e 1 loT Controller -
output & input ofito the simulation model Nadels P Conceptual Gateway In-Situ Weather
Medels loT Data
autput of simulation modsl
Analysed Data for Simulftion 1 Infrastructure
Data Aggregator|
Data Analysis Data pre-]
for Simulation pr

ing &
Models

updated weights|

—
Infrastructure Data
(Open Map of Gas/

Electricity, Telecoms,

Water, Transportation

Machine Leamning
Models

Decision Suppert Tool curation J

What-If Analysis

= y
Data Analysis 1 Traffic Data Traff
raffic
Pl ; Aggregator e
algorithms ’
= -
- [t t v
Configuraton Data \/ \ 4 Aoareontor
ggreg Data
Statistics Data Message Broker (kafka)
Application- 7
- ~) Commniy -
7 Data Aggregator| [Gommunity
Dynamic Sensor Data . Data

[Workﬂow/Service Orchestration}

Figure 2 The functional view of the PANTHEON architecture

It is important to mention that the input data used comes from different sources presented in D4.2 (
(PANTHEON Consortia, 2024)), is heterogeneous and should be normalized.

——
Page 12 of 76

(I

PANTHEON

D4.3

In the first stage, data is monitored and collected in the format it is on the source. Next, it is normalized and
placed in csv of JSON format, available for the scope of PANTHEON. The data collected and used is from

satellites (Copernicus) and local authorities.

An example of a data monitoring tool

Traffic data Traffic ids
id reg_date_time road_nan
1 2024-11-2519:29:23 Fili Centri 40
2 2024-11-2518:29:23 Fili Comn “
3 2024-11-2519:29:23 4MMH+X 20
4 2024-11-2519:29:23 AMOV+W o -
18:00 18:30 19:00 19:30 20:00
5 2024-11-2519:29:23 4MRQ+C P
Traffic map

Traffic durations

\
—— 1 WA

200 f A |

18:00 18:15 18:30 18:45 19:00 19:15 19:30 19:45 20:00 20:15

== duration_in_traffic

Figure 3 Data monitoring and visualisation

used to collect geographical data is presented below.

Data captured is then placed in the specific format required by running the algorithms, and this will be
presented for each particular case in the next chapters.

Page 13 of 76

(I

PANTHEON D4.3

3. Al ENHANCED SELF-ADAPTIVE SIMULATIONS

3.1 OVERVIEW

The self-adaptation mechanism in simulation models functions as a feedback-based system, using real-time
monitoring, data analysis, and Al-based decision-making to adaptively tune model parameters. This
adaptability allows simulation models, especially those powered by Digital Twins, to respond dynamically to
changing conditions, ensuring they continue to meet performance goals and remain relevant as the
environment evolves.

Al-enhanced self-adaptive simulations leverage Statistics, Graph Theory, Queue Theory, and Al-based models
to dynamically adjust response strategies for disasters such as wildfires, earthquakes, heatwaves, and man-
made crises. These methods allow for real-time decision-making, optimizing resource allocation, traffic
management, and emergency response while continuously adapting to evolving conditions.

3.2 AIMETHODS AND ALGORITHMS FOR SELF-ADAPTIVE SIMULATIONS

3.2.1 STATISTICAL MODELS

Statistical distributions [(Catherine Forbes, 2011; Davison, 2008)], play a critical role in queue simulation and
disaster modelling, allowing the prediction of traffic congestion, resource demands, and emergency response
times. The distributions selected for wildfire, earthquake, heatwave, and man-made disaster scenarios help
simulate real-world uncertainties in traffic flows, emergency calls, and hospital triage processes. The most
relevant statistical distributions include Poisson, Weibull, Pareto, and Exponential models, each offering
unique advantages in modelling different aspects of disaster response.

3.2.1.1 Theoretical Background of Key Distributions
3.2.1.1.1. Poisson Distribution

The Poisson distribution models the probability of a given number of events occurring in a fixed time or space
interval, assuming events occur independently.

Defined by the probability mass function:

A4
k!

P(X=k) =

Where A is the average rate of occurrences.
Relevance to Disaster Simulations:

e Models emergency call rates for ambulance dispatch during heatwaves.
e Simulates arrival of vehicles at intersections in evacuation routes.
e Predicts the frequency of aftershocks following an earthquake.

——
Page 14 of 76

PANTHEON D4.3

3.2.1.1.2. Weibull Distribution

The Weibull distribution is widely used for reliability analysis and failure prediction, making it ideal for
modelling infrastructure resilience in disaster scenarios.

Defined by the probability density function:

k xy k-1 X
fek)==(3) @

Where k is the shape parameter and A is the scale parameter.
Relevance to Disaster Simulations:

e Models failure rates of infrastructure (bridges, power lines) in earthquake and wildfire scenarios.

e Simulates fire spread behaviour by analysing burn rates of vegetation.

e Predicts evacuation time distributions, adjusting routes dynamically in heatwave and earthquake
evacuations.

3.2.1.1.3. Pareto Distribution

The Pareto distribution is used to model extreme events, making it well-suited for resource distribution and
rare but high-impact disaster events.

Defined by the probability density function:

axd
[xm, @) = e

Where xm is the minimum value and a is the shape parameter.
Relevance to Disaster Simulations:

e Models traffic congestion in urban areas, where a small number of roads carry most of the traffic.

e Analyses resource shortages, as a small number of hospitals may receive the majority of emergency
patients during a heatwave or earthquake.

e Predicts the probability of extreme fire outbreaks in wildfire scenarios.

3.2.1.1.4. Exponential Distribution

The Exponential distribution models the time between independent events, making it highly relevant for
response times and inter-arrival processes.

Defined by the probability density function:

) =22 x>0
Where A is the rate parameter.
Relevance to Disaster Simulations:

e Models time intervals between emergency response dispatches (e.g., ambulance arrivals at hospitals
during a heatwave).
e Predicts arrival rates of evacuees at triage centres.

——
Page 15 of 76

(I

PANTHEON D4.3

3.2.2 GRAPH THEORY APPLIED TO TRAFFIC OR CRITICAL NETWORK REPRESENTATION

Graph theory [(Berge, 1982); (Diestel, 2017)], is a fundamental mathematical framework used in modelling
disaster scenarios such as wildfires, earthquakes, heatwaves, and man-made disasters. A graph consists of
nodes (vertices) and edges (connections between nodes) that together represent complex systems, including
transportation networks, resource distribution, and emergency response logistics.

By applying shortest path algorithms, independent paths, queue modelling, and adaptive Al strategies, the
system ensures effective traffic control, resource allocation, and emergency response in wildfire, earthquake,
heatwave, and man-made disaster scenarios.

3.2.2.1 Key Components of Graph Theory used:

Nodes (Vertices):

Nodes represent key locations such as intersections, emergency stations, hospitals, fire outbreaks, and
population centres. In traffic and evacuation modelling, intersections are modelled as nodes to analyse
congestion and optimize routing. In healthcare response modelling, nodes represent triage stations and
hospitals, helping allocate emergency medical resources effectively.

Edges (Connections Between Nodes):

Edges represent roads, pathways, or links between key locations. Each edge is assigned properties such as
length, travel time, congestion level, or availability. In wildfire and earthquake scenarios, edges can be
removed or blocked to simulate damaged infrastructure and reroute traffic accordingly.

Cycles (Loops in the Graph):

A cycle occurs when a sequence of edges forms a closed loop, allowing multiple routes between nodes. While
cycles can provide alternative evacuation routes, they may also lead to inefficiencies if critical intersections
become bottlenecks. In disaster simulations, cycles are removed or reduced to create simpler models that
prioritize the most efficient paths.

Paths (Sequences of Connected Nodes and Edges):

A path is a sequence of nodes and edges that allows movement from one point to another. Shortest paths
are computed to find the fastest evacuation routes or quickest access to hospitals. In earthquake and wildfire
scenarios, path recalculations help adjust for blocked roads or changing fire conditions.

Independent Paths (Multiple Paths Without Shared Nodes):

Independent paths are essential in disaster management to prevent single points of failure. They ensure
redundancy in the network by providing alternative evacuation routes or alternative transport paths for
resources. In heatwave scenarios, independent paths help ambulances reach hospitals efficiently, preventing
congestion at key intersections.

3.2.3 QUEUE THEORY APPLIED TO THE SIMULATIONS

Queueing theory (Lee, 1966) (Donald Gross, 2008) is a mathematical framework used to analyse waiting lines
or queues. It studies the behaviour of systems where entities (e.g., data packets, tasks, or customers) arrive
for service, wait in line if the service is busy, and eventually receive service. In telecommunications, the
gueueing theory provides tools to model and predict traffic behaviour in networks, where data packets
compete for limited resources like bandwidth, processing power, or storage (Lee, 1966).

——
Page 16 of 76

(I

PANTHEON D4.3
3.2.3.1 Key Components of Queueing Theory used:

Arrival Rate (A): The rate at which packets arrive in the system.

Service Rate (p): The rate at which packets are processed or transmitted.

Queue Discipline: The order in which packets are served (e.g., FIFO, priority-based).
Traffic Load (p): Defined as p=A/p, this measures the utilization of the system.

PwhnNnpR

Queueing theory uses various models (e.g., M/M/1, M/M/c) to analyse the system's performance under
different conditions, such as single or multiple servers, finite or infinite queue lengths, and arrival/service
distributions.

A model M/M/c contains the following elements:

e Arrival Process (M): Markovian (Poisson) arrival process with exponential interarrival times.
e Service Process (M): Markovian (exponentially distributed) service times.
e Servers (c): Multiple parallel servers (c).

A model M/M/1 uses the same arrival and process but only one server. It is suitable for analysing individual
network components under light traffic, such as single routers, switches, or links. This is out of the scope of
our paper which focuses on multiple redundant paths.

In our simulation, we will use the M/M/c model. These models are scenarios where packets are handled by
multiple servers, such as in load-balanced routers or distributed data centres. It also helps evaluate the effect
of increasing or decreasing the number of servers on performance.

3.2.4 REINFORCEMENT LEARNING (RL) FOR ADAPTIVE DECISION-MAKING

Auto-adaptive Al leverages Reinforcement Learning (RL) (Lapan, 2020)to optimize disaster response strate-
gies dynamically. Unlike static models, RL-based Al systems continuously learn and adapt to real-time
changes, making them ideal for complex and unpredictable scenarios such as wildfires, earthquakes, heat-
waves, and man-made disasters. This framework enables intelligent decision-making in traffic manage-
ment, resource allocation, and emergency response operations.

The particular type of RL used is based on Q-Learning algorithm (Lapan, 2020).

3.2.5 KEY CONCEPTS IN AUTO-ADAPTIVE Al USING RL

State Representation:

o Defines the current environment, including traffic conditions, fire spread, seismic damage, hospi-
tal capacity, and resource availability.

e Encapsulates real-time sensor data and predictive analytics to provide an accurate representation
of the disaster landscape.

Action Space:
The set of possible actions the Al agent can take, such as:

e Adjusting intersection capacities to reduce traffic congestion.
e Re-routing emergency vehicles based on road conditions.

——
Page 17 of 76

(I

PANTHEON D4.3

o Allocating firefighting resources dynamically to optimize suppression efforts.
o Modifying hospital triage and admission rates to balance patient loads.

Reward Function:
Determines the effectiveness of an action in achieving disaster response goals, such as:

e Minimizing queue lengths in evacuation scenarios.

e Maximizing ambulance efficiency in transporting patients.

e Reducing fire spread and optimizing containment efforts.

e Ensuring hospitals maintain optimal capacity levels without overwhelming staff and resources.

Policy Optimization:

e Uses algorithms such as Deep Q-Networks (DQN), and Proximal Policy Optimization (PPO)[(Lapan,
2020)] to refine decision-making.

e The Al agent iteratively learns the best strategies to improve response times, reduce casualties,
and optimize resource deployment.

Q-Learning algorithm (Lapan, 2020)
The key concepts used are:

e State (s): The current situation or configuration of the environment.

e Action (a): A possible move or decision the agent can take from a state.

e Reward (r): The immediate feedback received after taking an action.

e Q-value (Q(s, a)): The expected cumulative reward for taking action a in state s, and following the
optimal policy thereafter.

e Learning Rate (a): Determines how much new information overrides old information.

e Discount Factor (y): Determines the importance of future rewards.

The core of Q-learning is the Bellman Equation update:

Q(spap) <« Q(spar) + a [rt+1 +vy HE}XQ (Se+1,a") — Q(se, at)]
Where:
S¢: current state
a;: action taken
T¢41: reward
S¢4q: Next state

max Q (S¢4+1,@’): maximum Q-value for the next state
a

Page 18 of 76

(I

PANTHEON

D4.3

3.2.6 APPLICATION OF THEORETICAL APPROACHES IN DISASTER SIMULATIONS

Wildfire Simulation:

Graph Construction: Nodes represent key points (fire locations, safe zones, road intersections),
while edges represent road connections.

Path Computation: Shortest paths and independent paths are computed to evacuate people
safely.

Queue Theory Integration: Congestion at intersections is analysed using queue models, and
reinforcement learning adapts routes dynamically.

Fire Spread Modelling: Graph nodes and edges are dynamically updated to represent areas
affected by fire, influencing traffic decisions.

RL dynamically adjusts evacuation routes based on fire spread projections.

Weibull distribution models the spread of fire over different terrain types.

Pareto distribution predicts extreme fire intensities in regions with dense vegetation.

Earthquake Simulation:

Graph-Based Infrastructure Mapping: Nodes represent bridges, roads, buildings, and
shelters; edges represent transportation links.

Impact Analysis: Earthquake damage is modelled by removing damaged nodes and edges,
forcing recalculations of evacuation paths.

Auto-Adaptive Traffic Response: Rule-based and RL-based queue adaptations adjust
intersection capacities for efficient evacuations.

RL optimizes traffic signal timing, reroutes emergency vehicles, and clears congestion in
affected areas, Al adapts road capacities based on seismic damage data and RL-based
simulation predicts bridge collapses, landslides, and transportation failures.

Weibull distribution models infrastructure failures like building collapses.

Heatwave Simulation:

Traffic Flow for Ambulances: Nodes represent ambulance depots, intersections, triage
centres, and hospitals.

Multi-Level Graph Representation:

Level 1 (Incident Location) - Level 2 (Triage Centers) - Level 3 (Hospitals)

Queue-Based Simulations: The model evaluates hospital and triage capacity, ensuring patients are
efficiently allocated to medical facilities.

Adaptive Resource Allocation: Al-based adjustments optimize patient distribution across
hospitals to prevent overcrowding.

Al models simulate ambulance dispatch efficiency by adjusting vehicle routing dynamically.
RL fine-tunes hospital triage capacities to prevent bottlenecks in emergency rooms. Adjusts
cooling centre accessibility based on real-time heat stress levels.

Poisson distribution predicts ambulance call volumes during heatwave peaks.

Pareto distribution models overloaded hospitals, where a small number handle most cases.
Exponential distribution estimates the time between hospital admissions due to heat-
related illnesses.

Page 19 of 76

(I

PANTHEON D4.3

Man-Made Disaster Simulation:

e Gas spread using LPDM algorithm.

e Critical Infrastructure Protection: Graph theory models power grids, communication networks,
and water supply systems.

e Traffic and Evacuation Modelling: Emergency response paths are dynamically adjusted to
prevent bottlenecks.

e RL minimizes congestion in mass evacuation scenarios, ensuring safe and rapid exit. Al
adjusts public transportation schedules and road access for optimal emergency response
and dynamically adapts resource reallocation as the crisis unfolds.

e Poisson distribution models incident occurrence rates, such as industrial accidents.

e Pareto distribution models resource shortages, ensuring efficient emergency supply
distribution.

3.3 STOCHASTIC WILDFIRE MODELS

We are using stochastic model for fire spread simulation which also allows users to interactively input wind
speed, wind direction, and fire spread parameters. The system also models terrain and vegetation
characteristics as static parameters while enabling real-time firefighting interventions through user input.

The fire spread model predicts the movement of fire based on:

e Wind Speed and Direction: Determines the rate and direction in which the fire advances.
e Surface Type and Vegetation: Areas with dense vegetation burn faster, whereas barren land slows
fire spread.

e Weather Conditions: Changes in humidity, temperature, and precipitation affect fire intensity and
behaviour.

The simulation uses a cellular automaton model, where each grid cell represents a section of land with
specific properties, including burn potential and spread probability. The model is continuously updated based
on new wind and environmental data, simulating how fire evolves.

3.3.1 KEY FACTORS IN WILDFIRE SIMULATION

An essential aspect of the simulation is the deployment and management of firefighting resources. The model
evaluates different strategies such as:

o Firebreaks: Creating gaps in vegetation to halt the fire’s progression.

e Controlled Burns: Using pre-emptive burning to eliminate fuel sources ahead of the fire front.

e Aerial Fire Suppression: Deploying water bombers and helicopters to target high-intensity areas.

e Ground Crews: Strategically placing firefighting teams based on terrain accessibility and fire
intensity.

The model used is stochastic, so, to simulate the probabilistic nature of fire behaviour, different statistical
distributions such as Poisson, Weibull, and Pareto (Catherine Forbes, 2011) are used. These distributions help
model variations in fire spread speed and randomness in ignition probabilities. (See Figure 5 Wildfire
simulationFigure 4)

——
Page 20 of 76

(I

PANTHEON D4.3

3.3.2 USE CASES

The use cases specific to the wildfire scenario are presented in the next figure extracted from D3.6.

Wildfire Training Simulation - UC-DS-ATH-B\

User Sets Up Wildfire Training Simulation
— Stakeholders Receive Simulation Insights and Decision Support
/ User Inputs Organization's Assets \————»(_User nitiates Simulation 3 System Runs Cascading Effects Simulation >

e e L e 2)

Hellenic Fire Service Employee,

Attica Training Exercise Observers

Figure 4 Wildfire simulation use-cases (as in D3.6)
The way the statistical analysis of data and statistical simulations are applied is described below.

UC-DS-ATH-B-1-User Sets Up Wildfire Training Simulation:

This initial use case involves a user (specifically a Hellenic Fire Service Employee) configuring the wildfire
simulation environment. The setup includes defining simulation parameters such as location, severity,
expected weather conditions, and other relevant inputs to create a realistic training scenario.

The simulation parameters are obtained by analysing existing data, and by selecting the simulation type.

UC-DS-ATH-B-2-User Inputs Organization’s Assets:

The user then provides details about the assets available for the simulation. These assets could include
firefighting vehicles, personnel, equipment, and any infrastructure the organization intends to use in
response to the wildfire. This step ensures that the simulation accurately reflects the organization's capacity
to respond to a wildfire.

UC-DS-ATH-B-3-User Initiates Simulation:

After configuring the setup and inputting organizational assets, the user starts the simulation. This action
triggers the system to begin the simulated wildfire scenario, putting the predefined assets and conditions
into action. It can select one of the statistical simulations presented for this scenario. This use case uses the
analysis of statistical data done for UC-DS-ATH-B-1.

System Runs Cascading Effects Simulation:

Once the simulation is initiated, the system processes the wildfire scenario, taking into account factors such
as wind, terrain, and vegetation. This "cascading effects" component likely refers to how the fire spreads and
interacts with the environment, impacting nearby assets and possibly creating secondary events (such as
smoke impacting nearby towns or fire-threatening infrastructure). This use case (the simulation) is based on
the parameters entered in previous use cases. To define the right parameters the user makes use of the
statistical analysis of data, then of the results of statistical simulations.

Stakeholders Receive Simulation Insights and Decision Support:

Page 21 of 76

(I

PANTHEON D4.3

The final use case involves stakeholders, including Attica Training Exercise Observers and other relevant
authorities, receiving insights from the simulation. These insights might include data on wildfire spread, asset
utilization, and decision support for handling similar real-life incidents. This output provides critical
information to guide training, improve decision-making, and refine response strategies. This use case is
indirectly affected by the statistical analysis of existing data, as this is an input for running the simulations.

3.3.3 SCENARIO

1. KPIs: Define Key Performance Indicators and Thresholds for Fire Prediction Accuracy
Initial Monitoring: The model continuously receives data on current temperature, wind speed,
humidity, and vegetation type.

3. Detecting Need for Adaptation: If wind the speed suddenly increases, the model's anomaly
detection system flags this as a potential risk factor. It consults its decision rules and decides that
adaptation is necessary to maintain prediction accuracy.

4. Decision and Adaptation: Based on reinforcement learning, the model has learned that increased
wind speed correlates with faster fire spread. It adjusts its wind influence parameter, recalculates
fire spread rates, and updates the simulation.

5. Feedback and Learning: After the adaptation, the model receives real-time satellite data confirming
its updated predictions closely match the observed fire spread. It logs this outcome, reinforcing the
adaptation strategy.

6. Predictive Proactive Adaptation: Later, a weather forecast predicts low humidity in the next few
hours. The model pre-emptively adjusts vegetation moisture levels to simulate how the fire might
behave under drier conditions, helping firefighting teams prepare.

By applying predictive/proactive in this way, wildfire simulation models can dynamically adjust to real-world
changes, improving their ability to provide timely and accurate predictions that support firefighting and risk
assessment efforts. This capability ultimately enhances the model’s value as a decision-support tool in high-
stakes, rapidly evolving wildfire scenarios.

3.3.4 USER INTERFACE AND SERVICES OFFERED

The simulation is displayed on a local canvas or saved as a PNG file, which can be opened in other applications.
Additionally, the simulation can be executed via a REST API, producing either a PNG file depicting the fire
representation or a JSON file containing the final computed parameters after applying the adaptive
algorithm.

The best results are obtained when running in interactive mode, and the user can conduct the way the
simulation is done.

An example of the output image is presented in the next figure (Figure 5 Wildfire simulation):

—
Page 22 of 76

(I

PANTHEON

Wildfire Simulation - Press any key to advance
Wind: [3, 0]; Speed: 4

Figure 5 Wildfire simulation
To run REST services, the following APIs are available:
Initialize fire

Send a POST request to <URL>/initialize-fire with a JSON body like:

{
"grid": [[O, 1, O], [1, O, 1], [0, 1, O],
"center": {"lat": 38.107983, "long": 23.66651},
"radius": 5,
"method": 2

}

The expected result is similar with:

{

"status": "success",

"data": {
"message": "Fire initialized",
"grid size": [3, 3],
"center": {"lat": 38.107983, "long": 23.66651},
"radius": 5,
"method": 2

Spreads fire

Send a POST request to <URL>/spread-fire with JSON body:

{
"grid": [[Or 1, 0]/ [1, OI 11, [Or 1, 0]]/

D4.3

Page 23 of 76

| D4.3

PANTHEON
"fire": [[O, O, O], [O, 1, O], [0, O, O1],
"wind": [1, -1],
"prob spread": 0.4,
"speed": 2
}

The expected results are similar with:

{
"status": "success",
"data": {
"message": "Fire spread simulated",
"grid size": [3, 3],
"fire size": [3, 3],
"wind": [1, -11,
"prob spread": 0.4,
"speed": 2
}
}

Adjust parameters
Send a POST request to <URL>/adjust-parameters with JSON body:

{

"grid": ([0, 1, O], [1, O, 1], [O, 1, O]I,
"fire": [[3, O, 2], [2, 1, O], T[4, 0, 01],
"wind": [1, -1],

"prob spread": 0.4,

"speed": 2

The expected result is similar with:

{
"status": "success",
"data": {
"message": "Parameters adjusted",
"grid": ([0, 1, O], [1, O, 1], [O, 1, O]],
"fire": [[2, O, 11, [1, 1, 11, [2, O, 111,
"wind": [1, -1]
}
}

Note: when running the server locally the URL could be: http://127.0.0.1:8000

3.3.5 INTERPRETATION OF THE DATA, AND RESULTS

The wildfire simulation utilizes diverse datasets to model fire behaviour, assess risk, and optimize response
strategies. These datasets align with the traffic adaptation model to ensure a seamless and effective disaster

response:

e Thesystem integrates vegetation maps to predict fire spread, combining this with road network data
for optimal evacuation routing. This data is specified when initial parameters are set.

e —
Page 24 of 76

http://127.0.0.1:8000/

(I

PANTHEON

To supp

To enha

D4.3

Terrain data is used alongside traffic models to identify high-risk zones and prioritize road closures
and safe routes. This data is specified when initial parameters are set.

Wind speed and direction influence fire dynamics. The Al system dynamically adapts road usage,
intersection capacities, and evacuation routes in response to changing weather conditions. The data
is entered interactively during the simulation run.

The traffic simulation integrates this data to facilitate rapid response and ensure firefighting teams
reach critical areas efficiently. It is done by generating traffic based on the statistical distributions
chosen.

ort firefighting operations and public safety, traffic adaptation plays a crucial role:

The system leverages OpenStreetMap data and queue theory-based congestion analysis to
implement curfew measures for fire response teams.

Routes are dynamically adjusted using Al-based adaptation, including rerouting and road closures.
The system ensures that evacuation paths avoid areas with high fire risk while minimizing congestion
at key intersections.

The Al system integrates resource allocation with traffic control measures to prevent bottlenecks.
Locations of hospitals, power plants, and water sources are factored into response planning.
Adaptive algorithms ensure these areas remain accessible while optimizing traffic and firefighting
routes.

nce real-time decision-making, the system provides:

Visualization: Displays results using charts, graphs, and maps to enhance situational awareness.
REST API Exposure: All services, including traffic adaptation, fire spread predictions, and evacuation
route computations, are exposed via APIs for seamless integration with emergency response
systems.

3.4 SELF-ADAPTIVE EARTHQUAKE MODELS

Our approach presents an Al-enabled auto-adaptive traffic simulation that models human behaviour and
vehicle movement in the situation of an earthquake, using OpenStreetMap? data. The system creates a graph
representation of the road network, dynamically computes shortest paths, analyses congestion, and applies
adaptive Al strategies, including rule-based and reinforcement learning (RL) techniques, to optimize traffic

flow.

3.4.1 KEY FACTORS IN EARTHQUAKE SIMULATION

The key

factors used by this auto-adaptive Al-enabled traffic simulation include:

Traffic Network Representation

The road network is extracted from OpenStreetMap and represented as a graph:

Nodes: Represent intersections with defined capacities, indicating how many vehicles can pass per
unit of time.
Edges: Represent roads with length attributes determining travel distances.

3 https://www.openstreetmap.org

Page 25 of 76

(I

PANTHEON D4.3

Two key interest points are selected to simulate human movement and traffic flow. The graph is refined by
removing cycles and computing the shortest paths between the two locations. The routes are adjusted
dynamically when intersections or roads become unavailable due to traffic or disasters.

To mitigate single points of failure, the system computes independent shortest paths, ensuring that critical
intersections do not appear in multiple routes. These paths are displayed for user analysis.

Traffic Flow Simulation Using Queue Theory (Lee, 1966)

The traffic flow along the shortest and independent paths is simulated using an M/M/c queue model.
Different statistical distributions (Poisson, Pareto, Weibull, and Exponential) are used to introduce stochastic
variations in traffic conditions.

Key outputs include:

e Queue Length Computation: Indicates congestion levels at intersections.

e Visualization: Queue lengths are presented in charts and overlaid on maps for user interpretation.

e Path Closure Simulation: The system assesses the impact of closed intersections by dynamically
recomputing new independent paths in real-time.

Auto-Adaptive Al Optimization

Adaptive Al strategies are implemented at multiple stages to dynamically adjust traffic flow and optimize
responses in disaster scenarios.

e Path Recalculation Under Disruptions: The system simulates intersection closures and immediately
searches for new independent paths to ensure continued traffic movement.

¢ Rule-Based Adaptation: Traffic signal timings and lane allocations are dynamically adjusted to reduce
congestion. This also is done to minimize queue lengths.

e Reinforcement Learning (RL) Adaptation: An RL model optimizes intersection capacities to minimize
gueue lengths over successive iterations. It is based on Q-Learning (Lapan, 2020)

e Saving Adaptive Parameters: The final optimized capacities of intersections and roads are stored for
future reference. Results, including node capacities and edge lengths, are exported to CSV files for
further analysis.

e Failure Notification: If no viable solution exists under certain traffic conditions, the system notifies
the user, enabling contingency planning.

Data Storage & Analysis

e CSV Data Export: Saves node capacities, edge lengths, and queue lengths for future analysis.
¢ Failure Detection: Notifies users if no feasible routes exist, allowing for contingency planning.

3.4.2 USE CASES

The use cases specific to the earthquake scenario are presented in the next figure extracted from D3.6.

——
Page 26 of 76

(I

PANTHEON D4.3
Vienna Training Exercise Observers
- UC-DS-ATH-A
| UserSets Up Earthquake Simulation -~ - o —— - N
- T B e — b [Stakeholders Receive Simulation Insights and Decision Support)
/ o o User Inputs Organization's Assels S User Initiates Simulation =i System Runs Cascading Effects Simulation ¥ 4

Hellenic Police Employee-._

Attica Earthquake Scenario Members

Figure 6 Earthquake simulation use cases (as in D3.6)

This diagram describes an earthquake preparedness simulation, allowing users to configure a realistic
earthquake scenario, initiate the simulation, and analyse its cascading effects. Stakeholders receive detailed
insights and decision support to improve their response strategies and enhance readiness for actual
earthquake incidents. This setup provides a comprehensive tool for training, decision-making, and evaluating
resource allocation in earthquake scenarios.

UC-DS-ATH-A-1-User Sets Up Earthquake Simulation:

In this step, a user, specifically a Hellenic Police Employee, configures the earthquake simulation. The setup
would include defining parameters relevant to an earthquake scenario, such as magnitude, epicentre
location, potential aftershocks, and affected infrastructure.

UC-DS-ATH-A-2-User Inputs Organization’s Assets:

The user provides details about the resources and assets available to respond to the earthquake, such as
police units, emergency personnel, vehicles, and medical supplies. These inputs help the system simulate a
realistic response scenario based on the organization's available assets. This use case is not affected by the
statistical analysis of existing data.

UC-DS-ATH-A-3-User Initiates Simulation:

Once the earthquake scenario is set up and assets are input, the user initiates the simulation, triggering the
system to start the simulated earthquake event. The statistical-based simulations are run. They will use the
parameters selected in a previous use case, and the algorithms specific to the target values simulated. (see
next subchapters). The statistical analysis of data gives input to this step, considering the parameters of the
statistical models.

UC-DS-ATH-A-4-System Runs Cascading Effects Simulation:

The system processes the earthquake scenario, simulating the cascading effects of the earthquake. This may
include aftershocks, structural damage, potential fires, or other secondary crises that could arise following
an earthquake. The cascading effects simulate the broader impact on infrastructure, populations, and
available assets. This use case is indirectly affected by the statistical analysis of existing data, as the inputs
may consider the statistical parameters or the result of simulations using statistical models.

—
Page 27 of 76

(I

PANTHEON D4.3

UC-DS-ATH-A-5-Stakeholders Receive Simulation Insights and Decision Support:

The final step involves stakeholders, including Vienna Training Exercise Observers and Attica Earthquake
Scenario Members, receiving insights and decision support from the simulation. These insights may cover the
impact on affected areas, asset deployment efficiency, and recommendations for handling similar real-world
incidents. This information is critical for improving preparedness, refining response plans, and enhancing
training for future earthquake events. This use case is indirectly affected by the statistical analysis of existing
data, considering that the statistical analysis gives inputs for the whole simulation process.

3.4.3 SCENARIO

1. KPIs: The main target of the application of the algorithms is the establishment of the parameters
(nodes, edges with their capacity, so that:

a. The paths between two points exist if previously it did not exist.

b. The path length is the smallest possible. The KPI is the report between the length of the
shortest path and the medium length of the paths.

c. The queue length after applying the self-adaption is smaller than the initial one. The KPI is
the report between the maximum queue length after applying the algorithm per maximum
gueue length before applying the algorithms.

2. Initial Monitoring: The traffic simulation continuously gathers real-time congestion data from
sensors, mirroring how seismic models receive ground-shaking data from fault-line sensors.

3. Detecting Need for Adaptation: Similar to seismic anomaly detection, traffic anomalies (e.g., sudden
congestion spikes due to an accident or road blockage) trigger adaptive measures in the traffic model.

4. Decision and Adaptation: Just as seismic models recalibrate soil amplification parameters, the traffic
model dynamically modifies intersection capacities and reroutes traffic to optimize flow in real-time.

5. Proactive Aftershock Adaptation: Post-disaster, the system simulates weakened infrastructure,
enabling a more accurate risk assessment of future congestion or road failures.

6. Feedback and Learning: After each adaptation, the Al model compares its predictions with actual
traffic flow data, refining parameters for future scenarios, much like how seismic models refine soil
and structural response data post-event.

3.4.4 Al METHODS FOR EARTHQUAKE MODEL ADAPTATION

The earthquake simulation is grounded in computational graph theory, queueing models, and reinforcement
learning to analyse and adapt traffic movement in seismic events. The approach is structured as follows:

Road Network Representation

e Data is collected from OpenStreetMap, where intersections are modelled as nodes and roads as
edges in a graph representation.

e The graph structure allows pathfinding and network analysis for effective traffic simulations during
earthquakes.

Path Computation and Adaptation (Berge, 1982)

e The shortest paths between key locations are computed to simulate human movement and
evacuation routes (Berge, 1982).

e Independent shortest paths are identified to prevent reliance on common intersections, reducing
the risk of single points of failure.

Page 28 of 76

(I

PANTHEON D4.3

e The system dynamically recomputes paths when intersections or roads become unavailable due to
earthquake damage.

Traffic Simulation with Queue Theory (Lee, 1966)

e Traffic congestion is modelled using M/M/c queueing systems, where intersections act as multi-
server queues.

e Queue lengths at intersections are computed to evaluate congestion levels and bottlenecks.

e Statistical distributions (Poisson, Weibull, Pareto, Exponential) simulate stochastic variations in
traffic flow, capturing real-world uncertainties.

Auto-Adaptive Traffic Control

e Rule-Based Adaptation: Intersection capacities are adjusted dynamically using predefined heuristics
to reduce queue lengths.

e Reinforcement Learning (RL) (Lapan, 2020): Al learns optimal traffic management strategies by
continuously adjusting intersection and road capacities based on observed traffic patterns.

e Adaptive controls ensure that congested roads and intersections dynamically evolve based on real-
time conditions.

Data Storage and Analysis

e Results, including nodes (intersection capacities) and edges (road lengths), are stored in CSV format
for future simulations and analysis.

e If no feasible evacuation route is found, the system notifies users, enabling proactive disaster
response planning.

Output Representation and API Integration

e Visualization: Results are displayed through charts, graphs, and maps, providing intuitive insights
into congestion, queue lengths, and alternative routes.

e REST API Exposure: All functionalities, including path computation, queue length analysis, and
adaptive traffic control, are exposed as RESTful APls, enabling seamless integration with external
disaster management and urban planning systems.

This computational framework ensures a real-time, adaptive, and data-driven approach to earthquake-
related traffic management, improving urban mobility under seismic stress conditions.

This Al-driven, auto-adaptive traffic simulation provides a robust framework for optimizing vehicle
movement in disaster scenarios. By leveraging real-time path recalculation, queue theory-based congestion
analysis, Al-driven adaptive learning, and comprehensive APl integration, the system enhances urban
resilience and emergency response strategies. Future work will integrate additional real-time sensor inputs,
satellite imagery, and advanced predictive modelling for improved disaster mitigation.

The details of this approach are presented in the next subchapters.

3.4.5 EARTHQUAKE SIMULATION MODEL USAGE DETAILS

3.4.5.1 Presentation in the user interface

The simulation is displayed on a local canvas or saved as a PNG file, which can be opened in other applications
when is about graphs and charts. Information on the map is displayed as HTML pages which are also saved
locally for further reference. Additionally, the simulation can be executed via a REST API, producing either a

—
Page 29 of 76

(I

PANTHEON D4.3

PNG file depicting the fire representation, an HTML file representing information on a map, or a JSON file
containing the final computed parameters after applying the adaptive algorithm.

The user interface and REST API presented will follow the main steps of running the simulation.

3.4.5.2 Road Network Representation.

This is the first step in our simulation model. We are building here the graph used to model the streets and
the intersections.

3.4.5.2.1. Inputs

OpenStreetMap* system.
Data is read using the osmnx® Python library. The call is:

Retrieve the street network
G = ox.graph from place(place name, network type="all")

place_name is the name of a place recognized by OpenStreetMap. Example used:

PLA

PLZ Greece"
PLAC

lay

7
f ~ I ~ n
ica, Greece

3.4.5.2.2. Outputs

csv files, ttl files to be used in GraphDB or neod4,j.

Data is read from OpenStreetMap and saved locally in csv files as nodes and as edges.
An example of a nodes file and an edges file is below:

Nodes file

osmid, y, x
26733684,37.9169119,23.7021355
26734032,37.9163994,23.7053716
26734041,37.9168317,23.70687

Edges file

u,v, name, length

26733684,7326480515, Unnamed Road, 55.138041356770685
26733684,9018040029, Unnamed Road, 91.7310126681424
26734032,4015873338,Hooe 1d0dv0oc,192.84253930809896

The nodes file and edges file are also converted in TTL format to be placed in the GraphDB database. An
example of ttl file is below:

@prefix : <http://example.org/roadnetwork#>

@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>
@prefix rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>
@prefix xsd: <http://www.w3.0rg/2001/XMLSchema#>

4 https://www.openstreetmap.org/
5 https://osmnx.readthedocs.io/en/stable/user-reference.html

——
Page 30 of 76

(I

PANTHEON D4.3

:Nodel2368717021 :connectsTo :Node932024473 ;
:roadName "©®pacUArrou" ;
:length "7.156062669799672"""xsd:float
:Nodel2368717021 :connectsTo :Nodell266622819 ;
:roadName "©pacUiiou"
:length "58.88768692868626"""xsd:float
:Nodel2368717021 :connectsTo :Nodell266622823 ;
:roadName "Unnamed Road"
:length "68.96437329715064"""xsd:float

The map with the nodes and roads is then represented in an HTML file, like in the next figure: (Figure 7 Road
network representation)

Here we have a map, the roads are represented by blue lines and the intersection by red circles.

For further process, we are interested in the Grapg which is constructed. The graph representation is in fact
what is visible in the next figures, but without the background map. Only the blue lines representing graph
edges and the red points representing nodes are considered by the graph representation. The weight of an
edge is the length of the road between two intersections.

3.4.5.2.3. User Interface

The created graphs are represented on the map. An HTML file is created, and by opening the html file in a
browser, the whole OpenStreetMap functionality, plus the representation of the graphs is displayed. This is
presented in the next figures.

At this stage the visual output displays the graph, indicating how complex it is.

The output is the graph definition in terms of nodes and edges and is saved in csv files to be used in the next
steps. Once the data is retrieved from OpenStreetMap, the graph is constructed and saved in csv files. For
the next steps, it is possible to edit the csv files with nodes and edges and work on the edited files.

That means that we can restrict the graph to only the nodes and edges of interest and remove the full
complexity of the graph read from OpenStreetMap.

In our particular example from a graph with some thousands of nodes, we reduce it to about 100 nodes of
interest. This way the whole computations are very fast.

>

/

S

Page 31 of 76

(I

PANTHEON D4. 3

Figure 7 Road network representation

3.45.2.4. The REST APIs

Read data from open street

Send a POST request <URL>/read-openstreet with a JSON body:
{ "place name": "Fili, Greece" }

Example response:

{

"status": "success",

"place": "Fili, Greece",

"nodes": "{... GeoJSON Data ...}",
"edges": "{... GeoJSON Data ...}"

Read data from the OpenStreetMap, save nodes and edges locally and return the file names.

Send a POST request to <URL>/read-openstreet-save with a JSON body:

{

"place name": "Fili, Greece",
"nodes file": "nodes fili.csv",
"street map file": "edges fili.csv"

}

Example Response

{

"status": "success"
"nodesFileName": "nodes fili.csv",
"edgesFileName": "edges fili.csv"

Page 32 of 76

(I

PANTHEON D4.3

Read data from OpenStreetMap, create an HTML map, and return the name of the HTML.

Send a POST request to <URL>/generate-map with a JSON body:

{

"place name": "Fili, Greece"
}
Example response

{

"status": "success",
"htmlFileName": "Fili.html"

3.4.5.3 Path Computation and Adaptation

This is the second step and allows us to compute the paths between two points of interest.

After reading the data from OpenStreetMap for a specific area, we have to select two points: Start point and
End Point. Then we will compute the paths between the two points.

The cycles are removed. The shortest paths are computed, and finally, the independent paths are computed.

3.4.53.1. Inputs:

1. Graph representation data obtained in the previous step. This should be in two csv files. One
describes the nodes and one describes the edges. Example of such data:

Nodes file, a csv file with the content similar to:

osmid, vy, x
26733684,37.9169119,23.7021355
26734032,37.9163994,23.7053716
26734041,37.9168317,23.70687

Edges file, a csv file with the content similar to:

u,v, name, length

26733684,7326480515, Unnamed Road, 55.138041356770685
26733684,9018040029, Unnamed Road, 91.7310126681424
26734032,4015873338,Hooe 1d0dv0g,192.84253930809896

2. Start and end node.
Example: 26733684, 26734032

3.4.5.3.2. Processing steps and methods:
The steps considered are:

1. Cycle removal
2. All (shortest) path computation
3. Independent paths selection

——
Page 33 of 76

(I

PANTHEON D4.3

1. Cycle removal.
Like all other graph algorithms, the Python networkx library is used. Particularly for the cycle removal,
the call of networkx® procedures is done in the following code:

while True:
try:
Attempt a topological sort
cycle=-nx.find cycle(graph, orientation='original')

L T+ - ~17] ¢ evigtra ~amO /¢ C ¢ o ore fFrom
1T a cycle exists, remove one edge I1Irom

graph.remove edge (*cycle[-1][:2])
except nx.NetworkXNoCycle:

No cycles remain

break

find cycle method is implemented in networkx using a cycle search via depth-first traversal.
2. Find the paths between the two nodes in increasing total length

After removing the cycles, the paths between the start and end node are computed. Input is the graph
resulting after cycle removal.

The Python code, calling networkx graph procedures is:

all paths = list(nx.all simple paths(graph, source=source, target=target))
a better variant is to use a method based on the Djikstra algorithm

all paths = list(nx.all shortest paths(graph, source=source, target=tar-
get))

path lengths = [(path, sum(graph[u][v]['length'] for u, v in zip(path[:-1],
path[1:]))) for path in all paths]
sorted paths = sorted(path lengths, key=lambda x: x[1])

The algorithm used by the all_simple_paths method is a modified depth-first search to generate the
paths’.

The algorithm used by the all_shortest_paths method is a modified Dijkstra's algorithm to search the
paths®.

When the graph is simple (hundred of nodes) al1 simple paths method is used as it is fast and gives
all the paths.

When the graph becomes more complex then it is recommended first to test if there exist paths between
the start and end node, the run several times a1l shortest path to get the required paths.

6 https://networkx.org/
7

https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.simple_paths.all_
simple_paths.html
8

https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.shortest_paths.ge
neric.all_shortest_paths.html#networkx.algorithms.shortest_paths.generic.all_shortest_paths

Page 34 of 76

| D4.3

PANTHEON

3. Find independent paths between the two nodes.

Having as input all the paths detected between the start and end node, in the next step only the independent

paths are computed.

The code used is:

Filter independent paths

independent paths = []

used nodes = set()

for path, length in sorted paths:

if not any(node in used nodes for node in path[l:-1]):

independent paths.append (path)
used nodes.update(path[l:-1]) # Avoid reusing intermediate nodes

return independent paths
If no paths are available, notifications are displayed.

3.4.5.3.3. Outputs:

e Html file, containing the maps and the graph representation

o Atext file enumerating the paths
In the figure: Figure 8 Paths between two points on the map detected paths are represented in magenta
colour on the map and graph.

In the figure: Figure 9 Independent Paths between two points on the map, the independent paths are

displayed in magenta colour.

If we compare figures 7 and 8, we can see that in figure 8 there are not nodes present on the two paths

(except start and end)
The results are displayed on the map and saved as html format.

The representation uses lines between points not following the streets for a better understanding of the

representation.

~ Gp‘u‘g‘g‘gg‘ﬁu"‘ 4

ENAMUEKAE
ohuoTKe
tpEaRdT
ToAhoyog
DuhiiG

| \ :
. o g
q 5 32040 T % i
A . s - '

. — N “J?puu-wo;)aowjb = Ve \
: \\f-ﬁ—_-:_" I ; A
i _‘/—‘\FIZONA \ex
e / 2,
: 7
. 3 \\

Figure 8 Paths between two points on the map

e —
Page 35 of 76

(I

PANTHEON D4. 3

Now the independent Paths are represented in the next figure (Figure 9 Independent Paths between two
points on the map):

EAnuikag
oMuoTIKAG
IPERETIKST
TOMOyOC
DU

Mupridc

Figure 9 Independent Paths between two points on the map

The output is useful for the user to visualize the paths, and for the system to have the paths saved for the
next steps.

3.4.53.4. REST APIs:

Besides the graphical representation of paths on a map, it is also possible to call REST APIs which make the
same computations and return the paths as a list of nodes

The REST APIs developed are

@app.post ("/compute-shortest-path")
async def api compute shortest path(request: PathRequest):

@app.post ("/compute-independent-path")
async def api compute independent path(request: PathRequest):

3.4.5.4 Traffic Simulation with Queue Theory

Now, after the previous step, having the paths and the independent paths we can simulate the traffic by
using queue theory. We employ an M/M/c queue model and generate “cars” going in different intersections.
Each intersection has a capacity (the number of cars possible to pass the intersection in a time interval). After
running a simulation, we obtain a description of queue lengths (cumulative) and a graph presentation like in
the next figure (Figure 10 Queue length variation during trials):

The details of this simulation are presented in the next paragraphs.

e —
Page 36 of 76

(I

PANTHEON D4.3

3.4.5.4.1. Inputs

1. Graph representation data obtained in the previous step. This should be in two csv files. One
describing the nodes and one describing the edges. Example of such data:

Nodes file, a csv file with the content similar to:

osmid, y,x
26733684,37.9169119,23.7021355
26734032,37.9163994,23.7053716
26734041,37.9168317,23.70687

Edges file, a csv file with the content similar to:

u,v, name, length

26733684,7326480515, Unnamed Road, 55.138041356770685
26733684,9018040029, Unnamed Road, 91.7310126681424
26734032,4015873338,Hooce 1d0dv0C,192.84253930809896

2. Startand end node.
Example: 26733684, 26734032
3. Simulation parameters (They define the type of algorithm used as described in the next paragraphs):

a. NO_TRIALS = 200 # Number of simulations run

b. ARRIVAL LAMBDA = 50 # Requests per time unit

c. MEAN SERVICE TIME = 20 # average number of requests served in a
time unit

d. QUEUE CAPACITY = 20 # Maximum capacity of the queue

These are inputs also for the previous step. For this particular step, the output of the previous step i.e. the
Paths detected are inputs.

3.4.5.4.2. Models and algorithms
The data is processed by applying queue simulation of type M/M/c and M/M/c/K
The notation M/M/c follows Kendall’s notation [(Lee, 1966)], where:

e M (Markovian arrivals) = The inter-arrival times follow an exponential (Poisson) process with rate A
(ARRIVAL_LAMBDA input parameter)

e M (Markovian service times) = The service times are exponentially distributed with rate u per server
(MEAN_SERVICE_TIME input parameter).

e ¢ (Number of servers) = There are ccc servers in parallel, all serving customers from a single queue
(Tested for 1 and 2).

e K (Queue capacity) = Maximum capacity of a queue (QUEUE_CAPACITY input parameter)
3.4.5.4.3. Performance metrics
For the simulation considered, we can compute the following performance metrics:
Expected Number of Requests in System (Little’s Law)

Using Little’s Law (L=AW), the average number of requests in the entire system (queue + service) is:

A
L=lg+y

Page 37 of 76

PANTHEON D4.3

Where:

e L: Average number of requests in the system (including those being served)
e Lg: Average number of requests in the queue (waiting)

e A: Arrival rate (e.g. request per unit time)

e u:Service rate (e.g. requests served per unit time)

Expected Number of Requests in Queue
The expected number of requests waiting in the queue is:

Py-p-c
Ly = fw P €
1-pc
Where:
e L4 (Expected Number of requests in Queue)

This represents the average number of requests waiting in the queue before service (excluding those
currently being served).

It is a key performance metric to measure congestion in the system.
e B, :(Probability That an Arriving Request Has to Wait)

This is the probability that all ¢ servers are busy, meaning an arriving request must wait in the queue
before being served.

e p:Trafficintensity (usualy p = i)

e c: Number of servers
e p.: Utilization factor per server

It is computed using the Erlang C [(Lee, 1966)] formula:

_ W cu
¢! cu—A2A

Pw 0

Where Py is the probability that there are zero requests in the system and L is the service rate:

-1

P0=

Ci(z/u)gwu)c. c
P n! c! cu—A2A

e P (Traffic Intensity per Server)

It is the ratio of arrival rate to service rate per server:

p=-
U

This represents the fraction of time that each server is busy, also known as server utilization.

——
Page 38 of 76

PANTlHEDN D4.3
e C (Number of Servers)

This is the total number of servers available in the system.

It affects the queue length because having more servers reduces waiting times.

e P (Overall System Utilization)

The system utilization is given by:

P=a

This represents the fraction of the time that the system (all servers combined) is busy.
When p. approaches 1 (i.e., the system is highly utilized), waiting times increase significantly.

e 1-p.(Idle Time Factor)
This represents the probability that at least one server is idle at any given moment.

It acts as a denominator to normalize the equation and prevent infinite values when the system is heavily
loaded.

Average Waiting Time in Queue
The average waiting time in the queue (before being served) is:
L
q

Wo=~

The components of the formula are explained in the previous parameter description.

Average Time Spent in the System

The total time a customer spends in the system (waiting + service time) is:
1
W=w,+-
u

For example, on the first try, we have:

Inputs

Simulation time: 1000 minutes

Number of servers: 4

Arrival rate: 50 calls/minute

Service rate: 20 calls/minute per server
Outputs

Average waiting time in queue: 0.0115 minutes

Maximum waiting time in queue: 0.3121 minutes

——
Page 39 of 76

PANTHEON D4.3

Average time in system (waiting + service): 0.0617 minutes

Approximate server utilization: 0.6281

In a situation when the capacity is half like in the previous one, we have:
Inputs

Simulation time: 1000 minutes

Number of servers: 4

Arrival rate: 50 calls/minute

Service rate: 10 calls/minute per server

Outputs

Average waiting time in queue: 102.4276 minutes

Maximum waiting time in queue: 200.8298 minutes

Average time in system (waiting + service): 102.5179 minutes
Approximate server utilization: 0.9996

3.4.5.4.4. Simulations

Now the simulation randomly generates requests in all nodes of the given path in the graph. The paths used
are the output of the previous step where the independent paths were computed between two nodes.

A discrete-event simulation using the M/M/c model tailored for this scenario. In this example, calls arrive
following a Poisson process, and call durations (service times) are exponentially distributed. We use a multi-
server resource (representing call agents) to process calls. You can adjust parameters like the arrival rate,
service rate, and number of servers to fit a specific use case.

The Poisson distribution is described as:

The probability of observing k events in a given interval (where k is a non-negative integer, 0, 1, 2, 3, ...) is
given by the formula:
Me=2

k!

P(k; 1) =

Where:

e P(k; 1) is the probability of k events occurring in the fixed interval.

e Ais the average rate of occurrence (the expected number of events in the interval).
e eis Euler's number, approximately 2.71828.

e k! isthe factorial of k (i.e., kx(k-1)x(k-2)x:--x1).

The exponential distribution is described as:

—
Page 40 of 76

(I

PANTHEON D4.3

The probability density function (PDF) of the exponential distribution is given by:
fOgA) =2, x>0
Where:

e f(x;A) is the probability density function (the likelihood of observing a value close to xxx).

e Ais the rate parameter, representing the average rate at which events occur.

e Note: Ais also the inverse of the mean (A=1/u), where p is the average time between events.
e eis Euler's number, approximately 2.71828.

e x>0x since the time or distance between events cannot be negative.

The cumulative distribution function (CDF), which gives the probability that a random variable X is less than
or equal to x, is:

Fl;)=1—e*, x>0
This function provides the probability that the time until the next event is less than or equal to x.

The simulation considers the particular queue model M/M/c where ¢ =1 (M/M/1) because we consider that
there are no alternatives for nodes. This can be adapted when the real situation indicates alternatives or not
in graph nodes.

The code used for the simulation is presented below:

for in range(trials):
propagation results = []
queue lengths = {node: 0 for node in path} # Track accumulated queue

for i in range(len(path)-1):
node, next node = path[i], path[i + 1]

Node service rate

service rate = G.nodes[node].get ('capacity', float('inf')) # Default to
10 1imit

Simulate arrival and service processes

arrivals = poisson(arrival lambda) .rvs ()

service times = expon(scale=mean service time).rvs(size=arrivals) 1if ar-
rivals > 0 else []

Process queue
total demand = arrivals + queue_ lengths[node]
if total demand <= service rate:

queue lengths[node] = 0

status = "Processed"
else:
queue lengths[node] = total demand - service rate
status = "Overflow"
Edge latency handling
edge latency = G.edges[node, next node].get('length', 1) # Default la-
tency of 1 if missing

propagation results.append ({
'node': node,
'arrivals': arrivals,
'queue length': queue lengths[node],

Page 41 of 76

(I

PANTHEON D4.3

'status': status,
'edge latency': edge latency
)

results.append (propagation results)

3.4.5.4.5. Outputs
In our implementation, we have used Python scipy to simulate Poisson and exponential distributions.
Next, we print for each trial what is happening in each node:

Number of requests (arrivals), number of requests placed in queue, latency (wait time) and the status
(process or overflow).

An example of a textual representation of values for each trial is:

Trial 200:

Node Intersection9: Arrivals=44, Queue Length=0, Status=Processed, Edge La-
tency=497

Node Intersection67: Arrivals=47, Queue Length=0, Status=Processed, Edge La-
tency=259

Node Intersection68: Arrivals=58, Queue Length=9, Status=Overflow, Edge La-
tency=409

Node Intersection70: Arrivals=46, Queue Length=0, Status=Processed, Edge La-
tency=213

3.4.5.4.6. User Interface

Besides this, we have plotted in a graph, for each trial, the number of requests in each node of the selected
path. This is represented in the next figure (Figure 10 Queue length variation during trials).

On the X axis the number of trials is presented. On the Y axixs the queue length is represented.

In the figure: (Figure 10 Queue length variation during trials) we can see that there are 5 nodes on the path.
In node Intersection 7 (orange) and Intersection 8 (green) is the biggest number of requests in the queue
(more than 20). Considering the limit of 20 established at the beginning, this means that there are overflows.

——
Page 42 of 76

(I

PANTHEON D4-3

Queue Length Over Trials by Node

Nodes
—e— Node Intersectiond
o~ Node Intersection67
~e— Node Intersectionsa
—e— Node Intersection70
—&— Node Intersectionl01

15 1 ’

Queue Length

Tral Number

Figure 10 Queue length variation during trials

The graph allows users to identify intersections with the longest queues, enabling them to make informed
decisions.

In addition to the graphical representation of paths on a map, it is also possible to call REST APIs that perform
the same computations and return the paths as a list of nodes.

3.4.5.4.7. The REST APIs developed are:

@app.post ("/simulate-queues")
async def api simulate queues (request: QueueSimulationRequest):

3.4.5.5 Auto-Adaptive Traffic Control

The final step involves running an auto-adaptive queue simulation. This process first initiates the simulation
and then adjusts the node capacities to reduce queue lengths.

We have developed two methods, both utilizing Reinforcement Learning (RL), with the key difference being
the reinforcement algorithm used.

Page 43 of 76

(I

PANTHEON D4.3

3.4.55.1. Inputs

The inputs considered here are the same as the ones presented previously for the simulations plus the
parameters necessary by the RL algorithms. They are:

1. Graph representation data obtained in the previous step. This should be in two csv files. One
describing the nodes and one describing the edges. Example of such data:

Nodes file, a csv file with the content similar to:

osmid, y,x
26733684,37.9169119,23.7021355
26734032,37.9163994,23.7053716
26734041,37.9168317,23.70687

Edges file, a csv file with the content similar to:

u,v, name, length

26733684,7326480515,Unnamed Road, 55.138041356770685
26733684,9018040029, Unnamed Road, 91.7310126681424
26734032,4015873338,Hooe 1d0dv0oC,192.84253930809896

2. Startand end node.
Example: 26733684, 26734032
3. Simulation parameters (They define the type of algorithm used as described in the next paragraphs):

a. NO TRIALS = 200 # Number of simulations run

b. ARRIVAL LAMBDA = 50 # Requests per time unit

c. MEAN SERVICE TIME = 20 # average number of requests served in a
time unit

d. QUEUE CAPACITY = 20 # Maximum capacity of the queue

4. RL parameters

O-learning parameters

ALPHA = 0.1 #)g rate

GAMMA = 0.9 # Discount factor

EPSILON = 0.1 # Exploration rate
5 ! =

NUM EPISODES =

These are general inputs from previous steps also. For this particular step, the output of the previous
gueue simulation is considered input. Also, the RL parameters.

3.4.5.5.2. Models and algorithms

In this step, we are comparing the results of the simulations described in the previous step, and the usage of
RLto improve the graph. Improvement of the graph means changing the capacity for processing in each node.

We are referring here just to the RL part.
The algorithm used is the RL algorithm called Q-Learning.

The Q-learning algorithm updates the Q-value using the formula:

——
Page 44 of 76

i;ﬁlzn D4.3
Q(s,a) « Q(s,a) + «a [r + ¥ max Q(s',a") —QCG, a)]
Where

e « =learning rate (determines how much new information overrides the old value).

er+y max Q (s',a’) = target Q-value.

e Q(s,a) = current estimate.

e The update rule adjusts Q(s, a) toward a better estimate.
The step-by-step process is:

1. Initialize the Q-table with zeros (or random values).
Choose an action aaa using an exploration-exploitation strategy (e.g., e-greedy: take random
action with probability €, otherwise take the best-known action).

3. Take action, observe the reward r and the new state s'.

4. Update the Q-value using the formula above.

5. Repeat until convergence or a stopping condition (e.g., reaching an optimal policy).

For the implementation, we are using the following elements:

e State: Queue length at a node.

e Actions: Increase, maintain, or decrease capacity.

e Reward: Penalize long queues; reward efficient capacity usage.
e Q-table Update: Adjusts the policy dynamically over episodes.

The implementation in Python is:

def get state(node, queue length):
"""Encodes the state as (node, queue length)."""
return (node, queue length)

def choose action(state):
"""Selects an action using an epsilon-greedy policy.
if state not in Q table:
Q table[state] = [0, 0, 0] # Actions: [Decrease, Maintain, Increase]

mmn

if random.uniform(0, 1) < EPSILON:

return random.choice ([0, 1, 2]) # Explore (random action)
else:

return np.argmax (Q table[state]) # Exploit (best action)

def update Q table(state, action, reward, next state):
"""Updates the QO-table using the Bellman equation.'""
if next state not in Q table:
Q table[next state] = [0, 0, 0]

best next action = np.max(Q table[next statel])

e —
Page 45 of 76

(I

PANTHEON D4. 3

Q table[state] [action] += ALPHA * (reward + GAMMA * best next action - Q ta-
ble[state] [action])

all queue lengths = {node: [0] * trials for node in path}
capacities = {node: 1 for node in path} # Initial capacity

for episode in range (NUM EPISODES) :
node queues = {node: 0 for node in path}

for trial in range(trials):

for i in range(len(path) - 1):
node, next node = path[i], path[i + 1]
service rate = capacities[node]

Simulate arrivals & service

arrivals = poisson(arrival lambda) .rvs ()

queue length = max (0, arrivals + node queues[node] - service rate)
node queues[node] = queue length

Store queue length
all queue lengths[node] [trial] = queue length

RL State and Action Selection
state = get state(node, queue_ length)

action = choose action(state)

Perform Action (Modify Capacity)

if action == 0 and capacities[node] > 1: # Decrease capacity
capacities[node] -= 1
elif action == 2: # Increase capacity

capacities[node] += 1

Reward: Encourage queue reduction, penalize long queues
reward = —-queue length if queue length > 5 else 10 - queue length

Next state
next state = get state(node, queue length)

update Q table(state, action, reward, next state)

if episode % 100 == 0:
print (f"Episode {episode}: Capacities - {capacities}")

3.4.55.3. Outputs

The outputs are the new capacities proposed at each running episode so that the queue length decreases.

For example:

Episode 10: Capacities - {'Intersectionl': 1, 'Intersection4l': 1, 'Intersec-
tion46': 1, 'IntersectionlOl': 1}

Episode 20: Capacities - {'Intersectionl': 1, 'Intersection4l': 1, 'Intersec-
tion46': 3, 'IntersectionlOl': 1}

Episode 30: Capacities - {'Intersectionl': 1, 'Intersection4l': 1, 'Intersec-
tion46': 1, 'IntersectionlOl': 1}

Episode 40: Capacities - {'Intersectionl': 4, 'Intersection4l': 1, 'Intersec-

tion46': 1, 'IntersectionlOl': 1}
Here we see the capacities adjusted in each node after running the algorithm.

Page 46 of 76

(I

PANTHEON

D4.3
3.4.5.5.4. User interface

When executing the RL method, the results are shown in next figure (Figure 11 Queue length after RL method
1)

On the X axis the number of trials is presented. On the Y axixs the queue length is represented.

On the right side, the queue length before adaptation is displayed, where all nodes in the paths have queue
lengths ranging between 30 and 70.

After applying the RL method, the queue length is reduced to a range of 0 to 30, demonstrating a significant
improvement.

Queue Lengths After Adaptation Queue Lengths Before Adaptation
—— Node Intersection9
—— Node Intersection67
25 1 —— Node Intersection68 T T 09—
—— Node Intersection70
—— Node Intersection101

—— Node Intersection9

—— Node Intersection67
—— Node Intersection68
—— Node Intersection70
—— Node Intersection101

'!l\‘.[}»H' 1\ P‘ I\W “‘\H‘ I i \“H‘ " 'I "' ‘n,'w

60 4
204

w
i<}

Queue Length
G
Queue Length
]

=
5]
w
=}
L

)
(=]
L

=
o
L

o
!

0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150

175 200
Trial Number

Trial Number

Figure 11 Queue length after RL method 1

Finally, the locations with the longest queues are displayed on the map, allowing the user to make informed
decisions on traffic management and organization (Figure 12 Intersections with the heaviest traffic).

The length of the queue is also represented on the map. The bigger the node (blue circle) is, the bigger the
gueue length.

Page 47 of 76

(I

PANTHEON D4.3

08%00dg
o

Figure 12 Intersections with the heaviest traffic

3.4.5.5.5. REST APIs

The REST APIs developed are:

@app.post ("/simulate-queues")
async def api simulate queues(request: QueueSimulationRequest) :

3.4.6 INTERPRETATION OF THE DATA, AND RESULTS

The system adapts in real-time based on seismic and environmental conditions, using reinforcement learning
(RL) and rule-based adaptation to optimize response strategies. It uses different datasets and offers a
decision support mechanism for the personnel involved in the management of such disasters. In summary,
we can present the following data and presentations offered:

e Data on natural gas stations, pipelines, railways, telecommunications, and power grids is used to
prioritize road closures and ensure emergency access to critical locations. This information is placed

on nodes.
e The system dynamically reroutes traffic using graph-based shortest and independent path

algorithms when infrastructure failures occur.
e Reinforcement learning optimizes traffic signals and lane allocations to minimize congestion during

mass evacuations.
e Al adapts emergency response routes for agencies such as the Hellenic Fire Service, Hellenic Police,

and emergency medical teams.
e Al algorithms adjust infrastructure risk models dynamically, ensuring real-time recalibration of

evacuation and traffic control strategies.

——
Page 48 of 76

(I

PANTHEON D4.3

To enhance real-time decision-making, the system provides:

e Charts, graphs, and maps provide real-time situational awareness for decision-makers.
e REST APIs expose auto-adaptive services for seamless integration with emergency management
platforms.

3.5 SELF-ADAPTIVE HEATWAVE MODELS

Our approach presents an Al-enabled auto-adaptive traffic simulation that models human behaviour and
vehicle movement in the situation of a heatwave, using OpenStreetMap?® data. The system creates a graph
representation of the road network, dynamically computes shortest paths, analyses congestion, and applies
adaptive rules. The auto-adaptive Al framework dynamically optimizes evacuation routes, hospital resource
allocation, and emergency response coordination, ensuring a resilient, data-driven approach to complex
scenarios.

3.5.1 KEY FACTORS IN HEATWAVE SIMULATION

For the specific scenario of a heatwave in Vienna, the system focuses on managing ambulance traffic,
hospital occupancy, and healthcare resource allocation.

Traffic Simulation for Ambulance Routes: The main intersection points are considered, and a graph is
created to represent them and the roads between them

Hospital Triage and Capacity Management: A three-level graph representation models patient flow:

e First Level: Call origin (incident location).
e Second Level: Triage stations.
e Third Level: Hospitals.

Queue simulations assess how triage and hospital intake capacities affect response efficiency.

Auto-adaptive Al optimizes triage and hospital capacities in real-time to balance patient distribution and
prevent overload.

Integration with Disaster Response Frameworks
The heatwave models align through shared Al-driven response mechanisms:

e Critical infrastructure interdependencies: The models assess how heat stress impacts power supply,
hospitals, and transportation networks.

e Adaptive traffic control: Al dynamically adjusts road usage for ambulances and emergency
responders based on hospital capacities and triage needs.

e Evacuation coordination: Uses historical and real-time hazard data to prioritize safe zones and
emergency healthcare staging areas.

% https://www.openstreetmap.org/

—
Page 49 of 76

(I

PANTHEON D4.3

3.5.2 USE CASES

The use cases specific to the earthquake scenario are presented in the next figure extracted from D3.6.

Attica Training Exercise Observers

Heatwave Simulation - uc-nanIE-A\

User Sets Up Heatwave Simulation
4

—— User Inputs Organizations Assets > User Initates Simulation > System Runs Cascading Effects Simulation —> Analysis of Simulation Outcomes

— T > 2y

Vienna Heatwave Scenario Members

JOH Employee
Figure 13 Heatwave simulation use cases (as in D3.6)

This diagram describes a heatwave preparedness simulation, allowing users to configure a realistic heatwave
scenario, run the simulation, and analyse the cascading effects. Stakeholders gain valuable insights into the
impacts of heatwaves on resources, infrastructure, and public health, enabling them to refine response
strategies and enhance readiness for future incidents. This simulation provides a comprehensive tool for
training, resource allocation, and decision-making in heatwave response scenarios.

UC-DS-VIE-A-1-User Sets Up Heatwave Simulation:

In the initial step, a user, specifically a JOH Employee, configures the heatwave simulation environment. This
setup typically involves defining key parameters such as temperature thresholds, geographic scope, duration,
and affected populations or regions.

The parameter selection is based on the statistical analysis of existing data, which is identified through data
visualization rather than an automated process due to the nature of the data. The studied data is sourced
from ZAMG.

Given that heatwaves in this specific use case lack substantial statistical data, a general-purpose statistical
model may be selected to supplement the analysis and obtain additional insights.

UC-DS-VIE-A-2-User Inputs Organization’s Assets:

The user inputs details about the assets available to respond to the heatwave. This may include cooling
centres, medical staff, transportation, water distribution systems, and any other resources that could be
deployed in response to extreme heat conditions. These inputs help the system simulate a realistic response
based on the organization’s capacity. This use case is not affected by statistical analysis.

UC-DS-VIE-A-3-User Initiates Simulation:

After setting up the scenario and inputting organizational assets, the user initiates the simulation, which
triggers the system to start the simulated heatwave event. Statistical analysis of data is indirectly used when
parameters for simulation are established.

Page 50 of 76

https://www.zamg.ac.at/cms/en/climate/climate-overview

(I

PANTHEON D4.3

UC-DS-VIE-A-4-System Runs Cascading Effects Simulation:

The system processes the heatwave scenario, taking into account the effects of prolonged high temperatures
on infrastructure, public health, and resources. Cascading effects might include increased health
emergencies, demand for water and power, strain on medical resources, and other secondary impacts due
to the heatwave. This use case is not affected by statistical analysis.

UC-DS-VIE-A-5-Analysis of Simulation Outcomes:

The final step involves analysing the simulation outcomes. Stakeholders such as Vienna Heatwave Scenario
Members receive insights from the simulation. These insights may include data on asset utilization,
effectiveness of response strategies, impact on affected populations, and potential improvements for future
real-world scenarios. This analysis supports better preparedness and decision-making for heatwave-related
incidents. This use case is indirectly affected by statistical analysis, considering that input parameters when
established may use the results of statistical analysis.

3.5.3 SCENARIO

1. KPIs: The main target of the application of the algorithms is the establishment of the parameters
(nodes, edges with their capacity, so that:

a. The paths between two points exists if previously it did not exist.

b. The paths length is the smallest possible. The KPI is the report between the length of the
shortest path and the medium lengths of the paths.

c. The queue length after applying the self adaption is smaller than the initial one. The KPI is
the report between the maximum queue length after applying the algorithm pe maximum
gueue length before applying the algorithms.

2. Initial Monitoring: The model continuously receives temperature, humidity, and solar radiation data
from weather stations and satellites, tracking local variations across urban and rural areas.

3. Detecting Need for Adaptation: The model detects a sudden decrease in humidity across a region,
which could exacerbate heat conditions. Anomaly detection flags this change, prompting adaptation
to adjust humidity parameters for more realistic heat index predictions. This is reflected in the graph
representing the routes studied.

4. Decision and Adaptation: Based on previous adaptations to low humidity conditions, the model
decides to increase local temperature projections and simulate higher heat stress levels for affected
regions, changing the topology of routes.

5. Predictive Proactive Adaptation: Forecasts predict high-pressure conditions that could sustain
extreme temperatures. The model proactively adjusts traffic to reflect the current situation.

6. Feedback and Learning: After the heatwave, the model compares its predictions to observed data,
reinforcing successful adaptations and adjusting sensitivity to future changes.

3.5.4 AILMETHODS FOR HEATWAVE MODEL ADAPTATION

The heatwave simulation is grounded in computational graph theory, queueing models, and reinforcement
learning to analyse and adapt traffic movement in heatwave events. The approach is structured as follows:

Adaptive traffic control uses rule-based and RL-based queue length optimization.
Graph representation of critical routes or hospital access

e Data is collected from OpenStreetMap, where intersections are modelled as nodes and roads as
edges in a graph representation.

—
Page 51 of 76

(I

PANTHEON
°

Path Co

D4.3
Graph-based traffic modelling considers key intersections and critical hospital access roads.

mputation and Adaptation

The shortest paths between key locations are computed to simulate human movement and
evacuation routes (Berge, 1982).

Independent shortest paths are identified to prevent reliance on common intersections, reducing
the risk of single points of failure.

The system dynamically recomputes paths when intersections or roads become unavailable due to
earthquake damage.

Traffic Simulation with Queue Theory

Traffic congestion is modelled using M/M/c queueing systems, where intersections act as multi-
server queues (Lapan, 2020).

Queue lengths at intersections are computed to evaluate congestion levels and bottlenecks.
Statistical distributions (Poisson, Weibull, Pareto, Exponential) (Davison, 2008) simulate stochastic
variations in traffic flow, capturing real-world uncertainties.

Auto-Adaptive Traffic Control

Rule-Based Adaptation: Intersection capacities are adjusted dynamically using predefined heuristics
to reduce queue lengths.

Reinforcement Learning (RL (Q-Learning) (Lapan, 2020)): Al learns optimal traffic management
strategies by continuously adjusting intersection and road capacities based on observed traffic
patterns.

Adaptive controls ensure that congested roads and intersections dynamically evolve based on real-
time conditions.

Data Storage and Analysis

Output

Results, including nodes (intersection capacities) and edges (road lengths), are stored in CSV format
for future simulations and analysis.

If no feasible evacuation route is found, the system notifies users, enabling proactive disaster
response planning.

Representation and API Integration

Visualization: Results are displayed through charts, graphs, and maps, providing intuitive insights
into congestion, queue lengths, and alternative routes.

REST API Exposure: All functionalities, including path computation, queue length analysis, and
adaptive traffic control, are exposed as RESTful APls, enabling seamless integration with external
disaster management and urban planning systems.

This computational framework ensures a real-time, adaptive, and data-driven approach to heatwave-related
traffic management, improving urban mobility under seismic stress conditions.

3.5.4.1

User interface and services offered

The simulation output is either displayed on a local canvas or saved as a PNG file when it involves graphs and
charts, allowing it to be accessed in other applications. Map-based information is presented as HTML pages,
which are also stored locally for future reference.

Page 52 of 76

(I

PANTHEON D4.3

Additionally, the simulation can be executed via a REST API, generating one of the following outputs:

e A PNG file visualizing the fire representation,
e An HTML file displaying information on a map, or
e A JSON file containing the final computed parameters after applying the adaptive algorithm.

Both the user interface and the REST API will follow the main steps required to run the simulation.

3.5.4.2 Graph representation of critical routes or hospital access

This is the first step in our simulation model. We are building here the graph used to model the streets and
the intersections. (Berge, 1982)

3.5.4.2.1. Inputs

The data used to define the route or hospital access is manually entered in csv files representing nodes and
edges.

The data entered in csv files can be obtained after OpenStreetMap is called for all the roads and intersections.
Itis a subset of the OpenStreetMap data, and it refers only to the point of interest in our simulation.

An example of node definition is given below:

Node, Type, Latitude, Longitude, Capacity,No Inputs,No Outputs

Intersectionl, intersection, 38.107983,23.66651,51, True,False
Intersection6, intersection, 38.104927,23.66902,88,False,False
Intersection9, intersection, 38.102436,23.66903,85,False,False

An example of an edge definition is given below:

Start Node, End Node, Length, Travel Time
Intersectionl, Intersection6,488,14
Intersection6, Intersection9, 488,14
Intersection9, Intersectionl6, 526,16
Intersectionl6, Intersectionl01,736,14

The longitude and latitude coordinates are used to enable the visualization of points on a map.
3.5.4.2.2. Outputs

The output of this step is the representation of the graph using networkx*° graph format.
3.5.4.2.3. User interface

Based on the data provided in the input files, a graph is generated and presented to the end user. An
important aspect to note is the dimension of the nodes, which reflects their capacity. If the nodes represent
intersections, the capacity indicates how many cars can pass through. If they represent triage points, the
capacity corresponds to the triage capacity.

The final interpretation and application of this information are left to the user. (Figure 14 Graph
representation of a critical route).

In the next figure the radius of the nodes is proportional with their capacity.

10 https://networkx.org/

Page 53 of 76

(I

PANTHEON D4. 3

Red nodes are start and end point.
Blue nodes are important intersection points which should be monitored.

Green nodes are normal intersections.

Figure 14 Graph representation of a critical route

3.5.4.2.4. REST APIs
The REST APIs developed are:

@app.post ("/read-graph")
async def api read graph(request: GraphRequest) :

3.5.4.3 Optimum paths selection

This is the second step and allows us to compute the paths between two points of interest.
After entering data for a specific area, the user selects two points: a Start Point and an End Point. The system
then calculates the possible paths between these points.

3.5.43.1. Inputs
The inputs are:

The graph representation in networkx format, obtained from the previous step

e —
Page 54 of 76

(I

PANTHEON D4.3

Start point and end point (the name of the graph nodes), for example, Intersectionl,
IntersectionlO1

3.5.4.3.2. Processing steps and methods:
The computation process includes the following steps:

1. Cycle Removal — Any cycles in the graph are eliminated to ensure valid paths.
Shortest Path Calculation — The system identifies the shortest paths between the selected points.

3. Independent Path Computation — Multiple independent paths are determined to provide alternative
routing options.

1. Cycle removal.
Like all other graph algorithms, the Python networkx library is used. Particularly for the cycle removal,
the call of networkx!! procedures is done in the following code:

while True:
try:
Attempt a topological sort
cycle=nx.find cycle(graph, orientation='original')

If a cycle exists, remove one edge from the cycle
graph.remove edge (*cycle[-1][:2])
except nx.NetworkXNoCycle:

No cycles remain

break

find cycle method is implemented in networkx using a cycle search via depth-first traversal.
2. Find the paths between the two nodes in increasing total length

After removing the cycles, the paths between the start and end node are computed. Input is the graph
resulting after cycle removal.

The Python code, calling networkx graph procedures is:

all paths = list(nx.all simple paths (graph, source=source, target=target))
A better variant is to use a method based on Djikstra algorithm

all paths = list(nx.all shortest paths(graph, source=source, target=tar-
get))

path lengths = [(path, sum(graph[u][v]['length'] for u, v in zip(path[:-11],
path[1:]))) for path in all paths]
sorted paths = sorted(path lengths, key=lambda x: x[1])

The algorithm used by the all_simple_paths method is a modified depth-first search to generate the
paths'?.

1 https://networkx.org/
12

https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.simple_paths.all_
simple_paths.html

——
Page 55 of 76

(I

PANTHEON D4.3
The algorithm used by the all_shortest_paths method is a modified Dijkstra's algorithm to search the
paths'?.

When the graph is simple (hundred of nodes) a11 simple paths method is used as it is fast and gives
all the paths.

When the graph becomes more complex then it is recommended first to test if there exist paths between
the start and end node, then run several times al1 shortest path to get the required paths.

3. Find independent paths between the two nodes.

Having as input all the paths detected between the start and end node, in the next step only the independent
paths are computed.

The code used is:

Filter independent paths
independent paths = []
used nodes = set()

for path, length in sorted paths:
if not any(node in used nodes for node in path[l:-1]):
independent paths.append (path)
used nodes.update (path[1:-1]) # Avoid reusing Intermediate nodes

return independent paths

If no paths are available, the system displays notifications to inform the user.
3.5.43.3. Outputs
The computed results are:

e Displayed on a map for visual interpretation.
e Saved as an HTML file for future reference.

3.5.4.3.4. User interface

The paths from one selected point to another are visually represented as shown in the following figure.
(Figure 15 All paths and independent paths between two nodes)

In the next figure the radius of the nodes is proportional with their capacity.
Red nodes are start and end point.

Blue nodes are important intersection points which should be monitored.
Green nodes are normal intersections.

Magenta edges are paths respective independent paths between start and end point.

13

https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.shortest_paths.ge
neric.all_shortest_paths.html#networkx.algorithms.shortest_paths.generic.all_shortest_paths

——
Page 56 of 76

(I

PANTHEON D4. 3

'\ .'i'*-\

O .\.\

Figure 15 All paths and independent paths between two nodes

\/

3.5.4.3.5. REST APIs
The REST APIs used are:

@app.post ("/compute-shortest-path")
async def api compute shortest path(request: PathRequest):

@app.post ("/compute-independent-path")
async def api compute independent path(request: PathRequest):

3.5.4.4 Queues simulation
3.5.4.4.1. Inputs
1. The paths obtained in the previous step are in networkx format. For example:

a. Path: ['Intersectionl', 'Intersection50', 'Intersection59', 'Inter-
sectionl01"']

2. Simulation parameters (They define the type of algorithm used as described in the next paragraphs):

©

. ARRIVAL RATE = 10 # average number of calls per minute (A)

b. SERVICE RATE 2 # average number of calls served per minute per
server (u)

c. NUM SERVERS = 5 # number of call agents (servers)

d. SIM TIME = 1000 # simulation time in minutes

3.5.4.4.2. Models and algorithms

Now, with the computed paths and independent paths, we can simulate the requested access using queue
theory. Specifically, we employ an M/M/c queue model.

The notation M/M/c follows Kendall’s notation [(Lee, 1966)], where:

e M (Markovian arrivals) = The inter-arrival times follow an exponential (Poisson) process with rate A
(ARRIVAL_LAMBDA input parameter)

Page 57 of 76

(I

PANTHEON D4.3

e M (Markovian service times) = The service times are exponentially distributed with rate p per server
(MEAN_SERVICE_TIME input parameter).

e ¢ (Number of servers) = There are ccc servers in parallel, all serving customers from a single queue
(Tested for 1 and 2).

e K (Queue capacity) = Maximum capacity of a queue (QUEUE_CAPACITY input parameter)

The requests simulated represent:

e "Ambulances" navigating through different intersections, or
e Patients requesting assistance at triage points.

Each intersection has a defined capacity:

e For intersections, this represents the number of ambulances that can pass within a given time
interval.
e For triage points, this corresponds to the number of patients that can be processed.

3.5.4.43. Performance metrics
For the simulation considered, we can compute the following performance metrics:
Expected Number of Requests in System (Little’s Law)

Using Little’s Law (L=AW), the average number of requests in the entire system (queue + service) is:
L=lg+2
U
Where:

e Lgisthe average number of requests in the queue.

Expected Number of Requests in Queue
The expected number of requests waiting in the queue is:

B, -p-c
Ly = fw P €
1-pc
The elements in the formula are:
e L, (Expected Number of requests in Queue)

This represents the average number of requests waiting in the queue before service (excluding those
currently being served).

Itis a key performance metric to measure congestion in the system.
e P, (Probability That an Arriving Request Has to Wait)

This is the probability that all ¢ servers are busy, meaning an arriving request must wait in the queue
before being served.

It is computed using the Erlang C [(Lee, 1966)] formula:

——
Page 58 of 76

PANTHEON D4.3

_ /e

P
W c! cu—2

0

Where Py is the probability that there are zero requests in the system and L is the service rate.

e P (Traffic Intensity per Server)

It is the ratio of arrival rate to service rate per server:

P:a

This represents the fraction of time that each server is busy, also known as server utilization.
e C (Number of Servers)

This is the total number of servers available in the system.

It affects the queue length because having more servers reduces waiting times.

e P (Overall System Utilization)

The system utilization is given by:

This represents the fraction of the time that the system (all servers combined) is busy.

When p. approaches 1 (i.e., the system is highly utilized), waiting times increase significantly.
e 1-p, (Idle Time Factor)
This represents the probability that at least one server is idle at any given moment.

It acts as a denominator to normalize the equation and prevent infinite values when the system is heavily
loaded.

Average Waiting Time in Queue

The average waiting time in the queue (before being served) is:

The components of the formula are explained in the previous parameter description.
Average Time Spent in the System

The total time a customer spends in the system (waiting + service time) is:
1
W=w,+-
U

For example, on the first try, we have:

——
Page 59 of 76

0,

PANTlHEDN D4.3
Inputs

Simulation time: 1000 minutes

Number of servers: 2

Arrival rate: 10 calls/minute

Service rate: 2 calls/minute per server

Outputs

Average waiting time in queue: 311.5594 minutes
Maximum waiting time in queue: 614.2010 minutes
Average time in system (waiting + service): 311.9135 minutes
Approximate server utilization: 0.9993

In a situation when the increased from 2 to 5, we have:
Inputs

Simulation time: 1000 minutes

Number of servers: 5

Arrival rate: 10 calls/minute

Service rate: 2 calls/minute per server

Outputs

Average waiting time in queue: 6.5923 minutes

Maximum waiting time in queue: 20.4640 minutes
Average time in system (waiting + service): 7.0921 minutes
Approximate server utilization: 0.9842

3.5.4.4.4. Outputs

After running the simulation, we obtain:

e A cumulative description of queue lengths, For example:

Node Intersectionl: Arrivals=51, Queue Length=0, Status=Processed, Edge Du-
ration=431

Node Intersectionb50: Arrivals=37, Queue Length=0, Status=Processed, Edge
Duration=431

Node Intersectionb9: Arrivals=47, Queue Length=23, Status=Overflow, Edge
Duration=931

Node IntersectionlOl: Arrivals=44, Queue Length=0, Status=Processed, Edge
Duration=431

——
Page 60 of 76

PANTlHEON D4.3
e A graphical representation of the results is shown in the following figure. (Figure 16 Queue length):

3.5.4.4.5. User interface

Besides this, we have plotted in a graph, for each trial, the number of requests in each node of the selected
path. This is represented in the next figure (Figure 16 Queue length).

On the X axis the number of trials is represented.
On the Y axis the queue length is represented.
We can see in the figure the nodes in the paths, and how many requests are in the queue.

In our example, the node “Intersection59” is the one with many requests in the queue. The others do not

have queues. To solve the problem, we have to treat (increase capacity, create another path, etc) for
Intersection 59.

Queue Length Over Trials by Node

Nodes
—e— Node Intersectionl
~#- Node Intersection50
—e— Node Intersection59
—e— Node Intersection102
—e— Node Intersection101

Queue Length

Figure 16 Queue length

Page 61 of 76

PANTlHEDN D4.3
3.5.4.4.6. RESTAPI

The REST APIs used are:

@app.post ("/simulate-queues")
async def api simulate gqueues (request: QueueSimulationRequest)

3.5.4.5 Auto adaptive queue simulation

The final step involves running an auto-adaptive queue simulation. This process first initiates the simulation
and then dynamically adjusts the node capacities to reduce queue lengths.

3.5.4.5.1. Inputs

1. The paths obtained in the previous step are in networkx format. For example:

a. Path: ['Intersectionl', 'Intersection50', 'Intersection59', 'Inter-
sectionl01']

2. Simulation parameters (They define the type of algorithm used as described in the next paragraphs):

s per minute (A)
erved per minute per

a. ARRIVAL RATE 10 # average number of c

b. SERVICE RATE = 2 # average number of ca
server (u)

c. NUM SERVERS = 5 # number of call agents (servers)

d. SIM TIME = 1000 # simulation time in minutes

e~
0
9]

5. RL parameters

O-learning parameters

ALPHA = 0.1 # Learning rate

GAMMA = 0.9 # Discount factor

EPSILON = 0.1 # Exploration rate

NUM EPISODES = 500 # Training episodes

3.5.4.5.2. Models and algorithms

In this step, we are comparing the results of the simulations described in the previous step, and the usage of
RLto improve the graph. Improvement of the graph means changing the capacity for processing in each node.

We are referring here just to the RL part.
The algorithm used is the RL algorithm called Q-Learning.

The Q-learning algorithm updates the Q-value using the formula:
Q(s,@) < Q(s,@) +alr +ymaxQ(s',a) ~ Q(s,a)]
a
Where

e a = learning rate (determines how much new information overrides the old value).

o7 +ymaxQ (s’,a’) = target Q-value.
a

e (Q(s,a) = current estimate.

e The update rule adjusts Q(s, a) toward a better estimate.

e —
Page 62 of 76

(I

PANTHEON D4.3
The step-by-step process is:

6. Initialize the Q-table with zeros (or random values).

7. Choose an action aaa using an exploration-exploitation strategy (e.g., e-greedy: take random
action with probability €, otherwise take the best-known action).

8. Take action, observe the reward r and the new state s'.

9. Update the Q-value using the formula above.

10. Repeat until convergence or a stopping condition (e.g., reaching an optimal policy).

For the implementation, we are using the following elements:

State: Queue length at a node.

Actions: Increase, maintain, or decrease capacity.

Reward: Penalize long queues; reward efficient capacity usage.

Q-table Update: Adjusts the policy dynamically over episodes.

The implementation in Python is:

def get state(node, queue length):
"""Encodes the state as (node, queue length)."""
return (node, queue length)

def choose action(state):
""MSelects an action using an epsilon-greedy policy.
if state not in Q table:
Q table[state] = [0, 0, 0] # Actions: [Decrease, Maintain, Increase]

mrmrn

if random.uniform(0, 1) < EPSILON:

return random.choice ([0, 1, 2]) # Explore (random action)
else:

return np.argmax (Q table[state]) Exploit (best action)

def update Q table(state, action, reward, next state):
"""Updates the Q-table using the Bellman equation.
if next state not in Q table:
Q table[next state] = [0, 0, 0]

mrrnmn

best next action = np.max(Q table[next state])
Q table[state] [action] += ALPHA * (reward + GAMMA * best next action - Q ta-
ble[state] [action])

all gqueue lengths = {node: [0] * trials for node in path}
capacities = {node: 1 for node in path} # Initial capacity

for episode in range (NUM _EPISODES) :
node queues = {node: 0 for node in path}

for trial in range(trials):
for i in range(len(path) - 1):
node, next node = path[i], path[i + 1]

e —
Page 63 of 76

(I

PANTHEON D4. 3

service rate = capacities[node]

Simulate arrivals & service

arrivals = poisson(arrival lambda) .rvs()

gqueue length = max (0, arrivals + node queues[node] - service rate)
node queues[node] = queue_ length

Store queue length
all queue lengths[node] [trial] = queue length

RL State and Action Selection
state = get state(node, queue length)

action = choose action(state)

Perform Action (Modify Capacity)

if action == 0 and capacities([node] > 1: # Decrease capacity
capacities[node] -= 1
elif action == 2: # Increase capacity

capacities[node] += 1

Reward: Encourage queue reduction, penalize long queues
reward = -queue_ length if queue length > 5 else 10 - queue length

Next state
next state = get state(node, queue length)

update Q table(state, action, reward, next state)

if episode % 100 ==
print (f"Episode {episode}: Capacities - {capacities}")

3.5.4.5.3. Outputs

The outputs are the new capacities proposed at each running episode so that the queue length decreases.

For example:

Episode 60: Capacities - {'Intersectionl': 2, 'Intersection4l': 2, 'Intersec-
tiond46': 7, 'IntersectionlOl': 1}

Episode 70: Capacities - {'Intersectionl': 1, 'Intersection4l': 7, 'Intersec-
tiond46': 1, 'IntersectionlOl': 1}

Episode 80: Capacities - {'Intersectionl': 3, 'Intersection4l': 10, 'Intersec-

tiond46': 8, 'IntersectionlOl': 1}

3.5.4.5.4. User interface
When executing the simulations, the results are shown in Figure 17 Adapted queue length(l)

e On theright side, the queue length before adaptation is displayed, showing values between 30 and
65 for all nodes in the paths.

e After applying RL, the queue length reduces to 0, demonstrating a significant improvement in
efficiency.

A smaller queue lengths indicate that the system is behaving better (smaller waiting time).

e —
Page 64 of 76

(I

PANTHEON D4.3
Queue Lengths After Adaptation Queue Lengths Before Adaptation
—— HNode Intersection1 —— Node Intersectionl
—— HNode Intersection4l —— Node Intersection4l
0.04 —— HNode Intersection46 70 1 —— Node Intersectiond6
) —— HNode Intersection101 —— Node Intersection101

0.00

Queue Length

~0.02

-0.04

&0

50 4

=1

i u‘,\.ul i

Queue Length

a 5 50 75 100 125 150 175 200 o 25 50 75 oo 125 150 175 200
Trial Number Trial Number

Figure 17 Adapted queue length(l)

3.5.4.5.5. REST API

The REST APIs used are:

@app.post ("/simulate-queues-adaptive-a")

async

def api simulate queues adaptive (request: QueueSimulationRequest):

@app.post ("/simulate-queues-adaptive-b")

async

3.5.5

def api simulate queues adaptive (request: QueueSimulationRequest):

INTERPRETATION OF THE DATA, AND RESULTS

The system adapts in real-time based data in traffic or triage points, using reinforcement learning (RL) and
rule-based adaptation to optimize response strategies. It uses different datasets and offers a decision support
mechanism for the personnel involved in the management of such disasters. In summary, we can present the
following data and presentations offered:

The system dynamically reroutes traffic using graph-based shortest and independent path
algorithms when infrastructure failures occur.

Reinforcement learning optimizes traffic signals and lane allocations to minimize congestion during
mass evacuations.

Al adapts emergency response routes for agencies such as the Police, and emergency medical teams.
Al algorithms adjust infrastructure risk models dynamically, ensuring real-time recalibration of
evacuation and traffic control strategies.

To enhance real-time decision-making, the system provides:

Charts, graphs, and maps provide real-time situational awareness for decision-makers.

REST APIs expose auto-adaptive services for seamless integration with emergency management
platforms.

Page 65 of 76

(I

PANTHEON D4.3

3.6 SELF-ADAPTIVE MAN-MADE DISASTER MODELS

Man-made disasters, such as toxic gas leaks, industrial accidents, or infrastructure failures, require adaptive
and intelligent response mechanisms. Auto-adaptive Al simulations integrate techniques previously applied
to wildfires, earthquakes, and heatwaves, ensuring effective disaster response, resource allocation, and risk
mitigation. This approach enables real-time monitoring, decision-making, and adaptation through Al-driven
methods, enhancing resilience and minimizing impact on human life and infrastructure.

3.6.1 KEY FACTORS IN MAN-MADE DISASTER SIMULATION

Toxic Gas Dispersion Modelling:

e Similar to fire spread simulations, the dispersion of toxic gases is modelled based on wind speed,
temperature, and topographical conditions. The method used is based on the Lagrangian Particle
Dispersion Model (LPDM) (Zannetti, 1990)

e Real-time sensor data from air quality monitoring stations could be integrated to update predictions
dynamically.

Infrastructure Damage Assessment:

e Bridges, buildings, and transportation networks are analysed similarly to earthquake damage
models.

e Graph-based simulations detect bottlenecks and failures, optimizing evacuation paths and rerouting
emergency response vehicles.

Health and Medical Response Optimization:

e Ambulance dispatch and hospital capacity management follow the same principles as in the
heatwave scenario.

e Al-driven queue models ensure rapid triage and optimal resource allocation at hospitals and
emergency centres.

3.6.2 USE CASES

The use cases specific to the man-made disaster scenario are presented in the next figure extracted from
D3.6.

vienna Heatwave Scenario Members

- Cyber-attack/Wildfire Training Simulation - UC-DS-VIE-8\

JOH Employee e
[\ Members Input Scenario Parameters
> Stakeholders Receive Simulation Insights and Decision Support
Members Input Organisation Assets J———_Members Initiate Simulation ——>(_System Runs Cascading Effects Simulation 7>

Vienna Training Exercise Observers

Figure 18 Man-made disaster simulation use cases (as in D3.6)

——
Page 66 of 76

(I

PANTHEON D4.3

3.6.3 SCENARIO

1. KPIs: The simulation is based on stochastic model. It cannot be tested against real data. The
dispersion is visually inspected, and its change checked when parameters are changed. It is a
qualitative approach based on expert judgement.

2. Initial Monitoring: The model continuously receives data on chemical dispersion, wind speed,
temperature, and population density, updating its predictions based on real-time sensor inputs.

3. Detecting Need for Adaptation: The model detects a wind shift that could spread the toxic plume
toward residential areas. Anomaly detection flags this change, prompting an adaptation to adjust the
plume’s dispersion path and exposure predictions.

4. Decision and Adaptation: Based on hazard type and local geography, the model adapts its dispersion
parameters to simulate faster spread along the new wind direction. It updates exposure estimates
for areas now at risk.

5. Proactive Prediction and Adaptation: Forecasts predict rain, which could spread toxic runoff to
nearby water sources. The model proactively adapts by simulating potential contamination paths in
water systems and adjusting containment recommendations.

6. Feedback and Learning: After the incident, the model compares its predictions to actual containment
data, reinforcing adaptations that accurately predict spread and risk, improving its response for
future scenarios.

3.6.4 AL METHODS FOR MAN-MADE DISASTER MODEL ADAPTATION

Lagrangian Dispersion Models

e They describe fluid elements that follow the instantaneous flow. They simulate individual particles
released into the atmosphere, tracking their movement with random fluctuations.

Graph Theory for Infrastructure & Traffic Management:

e Models affected road networks, hospitals, evacuation centres, and emergency response stations.
e Uses shortest-path algorithms and independent path calculations to optimize evacuation and rescue
efforts.

Queue Theory for Medical and Traffic Simulations:

e M/M/c queue models analyse congestion in hospitals, triage centres, and ambulance dispatch
locations.
e Adaptive queue adjustments (rule-based and RL-based) optimize emergency response efficiency.

Statistical Distributions for Risk and Response Prediction:

e Poisson distributions model the frequency of emergency calls and resource demands.
e Weibull and Pareto distributions predict structural failures in buildings and industrial sites.
e Exponential models estimate response times and hospital admissions.

Reinforcement Learning (RL) for Real-Time Adaptation:

e RL-based models adjust containment strategies, traffic rerouting, and medical dispatch coordination.

—
Page 67 of 76

(I

PANTHEON D4.3

3.6.5 USER INTERFACE AND SERVICES OFFERED

For this scenario, there are two parts of the simulation. In the first part, the gas spread is simulated. This may
imply the closure of some areas or routes. Consequently, in the second part we are treating the routes and
paths between interest points, to simulate the situations when some areas are affected, and reaching them
is not possible.

The simulation output is either displayed on a local canvas or saved as a PNG file when it involves graphs and
charts, allowing it to be accessed in other applications. Map-based information is presented as HTML pages,
which are also stored locally for future reference.

Additionally, the simulation can be executed via a REST API, generating one of the following outputs:

e A PNG file visualizing the fire representation,
e An HTML file displaying information on a map, or
e A JSON file containing the final computed parameters after applying the adaptive algorithm.

Both the user interface and the REST API will follow the main steps required to run the simulation.

3.6.5.1 Gas spread simulation

In the first part of the simulation, we are modelling the gas spread using the Lagrangian Particle Dispersion
Model (LPDM)[(Zannetti, 1990)]
3.6.5.1.1. Inputs

1. The location where the simulation begins (OpenStreetMap coordinates)
Simulation parameters:

Simulation parameters

num_particles

source position V)
wind speed = 5
wind direction = ion in degrees (0 = right, 90 = up)

e i AN ~oeffi~dont
usion coerricienc

S

diffusion coeff = 0.
simulation time = 1
dt =1 # Time step (s)

3. Arrow keys are used to change the wind direction (in interactive mode)

4. +and—Keys used to increase/decrease the wind speed by 1 m/s (in interactive mode).

3.6.5.1.2. Processing steps and methods
We are simulating using the LPDM model.
The following assumptions are considered:

e Particles are massless points (mass is tracked independently).
e No particle-particle interactions.

e Turbulence is Gaussian and homogeneous (in basic form).

e Advection is linear across a small time step.

The Lagrangian Particle Dispersion Model is described as:
The position of a particle is updated over time as:
X(t + At) = Z(t) + UE, AL + v/ (&, t)At

——
Page 68 of 76

(I

PANTHEON D4. 3

Where:

e X(t): position vector at time (t)

. 17(55, t): deterministic wind field (advection)

. _17(55, t): random component due to turbulence
o At:time step

The turbulent velocity u is modelled as a stochastic (random) process using a random walk:

W =2K i

Where:

e K:turbulent diffusivity tensor (often simplified to scalar values in x, y, z)
e 17 ~ N(0,1): Gaussian random vector

The wind field is:
U=(u,v,w)=(wind speed,0,0)

The concentration at any location is estimated using the particle count in grid cells:

N

1 — -

Cx,y,zt) = ﬁz m; - Say(x; — X)
i=1

Where:

e AV:volume of the grid cell
e m;: mass per particle (constant or variable)
e Jayp: binning function (1 if inside grid, 0 otherwise)

The implementation in Python is:

def update particles(particles, wind speed, wind direction, diffusion coeff,
dt) :

mrrn mrmn

Move particles based on wind and diffusion.
theta = np.radians(wind direction)

wind x = wind speed * np.cos(theta) * dt
wind y = wind speed * np.sin(theta) * dt

Random diffusion (Gaussian distribution)
diff x = np.random.normal (0, diffusion coeff * np.sqgrt(dt), len(particles))
diff y = np.random.normal (0, diffusion coeff * np.sqgrt(dt), len(particles))

Update particle positions
particles[:, 0] += wind x + diff x
particles[:, 1] += wind y + diff y
return particles

e —
Page 69 of 76

PANTlHEON D4.3
3.6.5.1.3. Outputs

The simulation is displayed on a local canvas or saved as a PNG file, which can be opened in other applications.

For example, we have simulated a situation when there is no wind (wind_speed =0) and the situation with
wind_speed =5 m/s from the direction west (angle 0).

The first representation is displayed on the left of the next figure. The right part of the figure displays the

situation when the wind moves the gas about 2000 m (see the numbers on the x horizontal scale in the
charts)

The next outputs are working in non-interactive mode.

Lagrangian Particle Dispersion Model Lagrangian paticle Dispersion Mode!

27700

100

~
S
2
=3
3

27500

Crosswind Distance (m)
Crosswind Distance (m)
°

-100 1
27400

—200 4
27300

-200 ~100 0 100 200 2300 2400 2500 2600 2700
Downwind Distance (m) Downwind Distance (m)

3.6.5.1.4. User interface

In interactive mode, the gas spread is displayed on the map. When pressing the arrow keys, the wind

direction is changed. When pressing the +/- keys, the wind speed is changed and next another simulation is
run.

An example of the output image is presented in the next figure (Figure 19 Gas spread simulation):

Page 70 of 76

(I

PANTHEON D4.3

Gas spread Simulation - Press any key to advance
Wind: [3, 3]; Speed: 14

Figure 19 Gas spread simulation

3.6.5.2 Optimum paths selection

This is similar to the simulation in case of an earthquake. Please refer to Chapter 3.4 to see how

e Graphs are created by changing data received from OpenStreetMap
e The paths between two points are computed

e The simulation of requests in each node of the graph is simulated

e Auto-adaptive simulation is run (Based on RL methods)

The description of inputs, outputs, algorithms, user interface and REST API from Chapter 3.4 is applicable also
here.

For a better understanding, we are presenting a short version of the whole process here.

After entering data for a specific area, the user selects two points: a Start Point and an End Point. The system
then calculates the possible paths between these points.

The computation process includes the following steps:

e
Page 71 of 76

PANTlHEON D4.3
e Cycle Removal — Any cycles in the graph are eliminated to ensure valid paths.
e Shortest Path Calculation — The system identifies the shortest paths between the selected points.

e Independent Path Computation — Multiple independent paths are determined to provide alternative
routing options.

If no paths are available, the system displays notifications to inform the user.
The computed results are:

e Displayed on a map for visual interpretation.
e Saved as an HTML file for future reference.

The paths from one selected point to another are visually represented as shown in the following figure.
(Figure 20 Best routes to avoid damages):

The REAT APIs used are:

@app.post ("/compute-shortest-path")
async def api compute shortest path(request: PathRequest):

@app.post ("/compute-independent-path")
async def api compute independent path (request: PathRequest):

Laudongasse

esehbint

a4sebudoy | ¢

e
2 Buchfeld |
|

&
5. 38
3
5

Ottakringer, ‘}
Braverei |||

asseb)I3pa]

[

F55E6UIOQUOY

o I8
ST
Rat)\faus

_ Josefstadt

) [fassebsuveunund

SaerOIoNs

Gk Iy
4 el |

3
Strozzigrunds

i

Zieglergusea

A5 £d - '7N’ tifaae 25 F (]
Wickhiofrg, @ & = NeUstifigasse ——— e
1 e &) z e S anktlnic Cstheate)
S 5 % @ e Vo eater
e RERIEGTY B S - A G e m g N
& sthivelz, &) 0engasse = U e e o i e, et (2 N
£ E' { ‘s] % X ‘.‘ % 1 £ i z = ST T W :';/. g o%,\
[} 3 i Z q
3 Vs z £ 2 i 4 s
‘ - Eiet H 3 3 Sl | REEE o z Sispittelbe %
§ £ it ST g g ¢ 53 e
\ : L Sourggesset Mien HERS) HEES 2 % BN
& £ =~/ Nibelungenvierteli ‘& % Stadthalle 8 3 # ? P-4\
& 3 2 2 J 3 A “Must
v s [z I ‘ Neubau| £ Firs)
PR S & s, 2 E 2 1 Sehnttenteld S) 200

Figure 20 Best routes to avoid damages

3.6.5.3 RL for Adaptive Resource Deployment

This is similar to the simulation in the case of a heatwave. Please refer to Chapter 3.5 for a full description of
inputs, outputs, algorithm and user interface.

We are presenting here a summary of this process applied to the specific use case.

The final step involves running an auto-adaptive queue simulation. This process first initiates the simulation
and then dynamically adjusts the node capacities to reduce queue lengths.

e —
Page 72 of 76

(I

PANTHEON D4-3

We have developed methods based on Reinforcement Learning (RL). After one of the methods is applied, on

the right side, the queue length before adaptation is displayed, showing values between 30 and 70 for all
nodes in the paths.

After applying RL, the queue length reduces to a range of 0 to 22, demonstrating a significant improvement
in efficiency.

Queue Lengths After Adaptation Queue Lengths Before Adaptation
= Node Wienll 3 ‘
—— Node Wien12 70 | I
—— Node Wienl3
20 4 —— Node Wienl4
—— Node Wien15 60 4 [
—— Node Wien16
—N:d:w;::ﬂ ‘ J ” ‘] I IH Hl ‘l u ‘” l ||4 ‘u
—— Node Wien18 50 1| ' | “ i T" | ‘\ |
;15. ¢ - - l . ‘ ” ‘) w "M\
2 P | | ’ | ‘J "ﬂ | ll‘ " ‘ ’N\ I, ' .' II\ “
g 3 I ‘
g g \ \
2 10 L | |
3 \ 3 301 | i
i —— Node Wienl1l
20 4 —— Node Wien12
54— —— Node Wien13
‘ | ‘” rl‘ w ’ x —— Node Wien14
' 10 —— Node Wienl5
—— Node Wien16
\ﬂ ” \ HI \ H] l\ \ |1 ‘ ~[pode ey
04 1) \ 0 —— Node Wien18
100 125 150 175 0 25 50 75 100 125 150 175 200
Trial Number Trial Number

Figure 21 Queue lengths after and before self-adaption

Page 73 of 76

(I

PANTHEON

4. CO

D4.3

NCLUSIONS AND FUTURE WORK

The D4.3 - Enhanced Intelligence & Self-adaptive Simulations deliverable presents a comprehensive

framew

ork for integrating Artificial Intelligence (Al) and Machine Learning (ML) algorithms into self-

adaptive simulation models for Community Disaster Risk Management (DRM).

The mai

Al-Enha
and ano

n contributions refer to:

nced Disaster Simulations: The integration of Bayesian optimization, reinforcement learning (RL),
maly detection enables simulations to adjust dynamically to environmental changes.

Self-Adaptive Modelling for Different Disaster Scenarios:

Wildfire models adjust based on wind speed, fuel load, and fire spread patterns to optimize
evacuation strategies.

Earthquake models incorporate seismic data, infrastructure resilience, and traffic patterns to
improve disaster response.

Heatwave models dynamically manage hospital triage, ambulance dispatch, and traffic flow to
prevent system overloads.

Man-made disaster models simulate toxic gas dispersion, industrial accidents, and emergency
evacuation logistics for efficient containment and public safety.

Graph Theory and Queue Theory for Optimization:

Graph-based modelling enhances route planning, evacuation management, and emergency resource
allocation by computing shortest and independent paths.

Queue theory models (M/M/c) simulate traffic congestion, hospital triage, and emergency response
bottlenecks, providing adaptive solutions through Al-based decision-making.

Real-Time Processing and Decision Support:

REST APl integrations enable seamless data processing, visualization, and interaction with emergency
management platforms.

The current work is intended to be a starting point for future work including:

Improving real-time data integration by incorporating satellite and loT sensor data for more
accurate predictions.

Refining Al models with advanced reinforcement learning techniques to further enhance
adaptability.

Developing a unified simulation dashboard for real-time visualization and interactive decision-
making.

Extending the self-adaptive approach to additional disaster scenarios, including floods and
pandemics.

—
Page 74 of 76

(I

PANTHEON D4.3

5. REFERENCES

Anand Deshpande, M. K. (2018). Artificial Inteligence for Big Data. Packt.

Apache. (2024). ApacheMQ. Retrieved from https://activemq.apache.org/

Apache Airflow. (2024). Retrieved from Apache Airflow: https://www.geeksforgeeks.org/what-is-apache-
airflow/

Apache Kafka. (2024). Apache Kafka. Retrieved from https://kafka.apache.org/

Apache Kafka vs RabitMQ. (2024). Retrieved from https://www.upsolver.com/blog/kafka-versus-rabbitmqg-
architecture-performance-use-case

Apache NIFI. (2024). Retrieved from Apache NIFI: https://nifi.apache.org/
Berge, C. (1982). The Theory of Graphs and Its Applications. Greenwood Press.
Catherine Forbes, M. E. (2011). Statistical Distributions - Fourth Edition. WILEY.

Davison, A. C. (2008). Statistical Models (Cambridge Series in Statistical and Probabilistic Mathematics, Series
Number 11). Cambridge University Press.

Diestel, R. (2017). Graph Theory - Fifth Edition. Springer.

Docker documentation. (2024). Retrieved from Docker documentation: https://docs.docker.com/get-
started/overview/

Docker Swarm. (2024). Retrieved from Docker Swarm: https://www.geeksforgeeks.org/introduction-to-
docker-swarm-mode/

Donald Gross, J. F. (2008). Fundamentals of Queueing Theory Fourth edition. Wiley-ISBN: 9780471791270.

IEEE. (2022). IEEE Recommended Practice for Distributed Simulation Engineering and Execution Process
(DSEEP. Retrieved from https://standards.ieee.org/ieee/1730/10715/

IEEE-1730. (2022). https://ieeexplore.ieee.org/document/9919118. IEEE.

ISO/IEC/IEEE 24748-6:2023(en). (2023). Retrieved from ISO/IEC/IEEE 24748-6:2023(en):
https://www.iso.org/obp/ui/en/#iso:std:iso-iec-ieee:24748:-6:ed-1:v1:en

Keycloack. (2024). Keycloack. Retrieved from https://www.keycloak.org/documentation
Kubernetes. (2024). Retrieved from Kubernetes: https://kubernetes.io/

Kubernetes Vs Swarm. (2024). Retrieved from Kubernetes Vs Swarm:
https://phoenixnap.com/blog/kubernetes-vs-docker-swarm

Lapan, M. (2020). Deep Reinforcement Learning Hands-On (Second Edition). Packt-ISBN: 9781838826994.
Lee, A. M. (1966). Applied Queueing Theory. London: Macmillan Press Limited.
Liu, H. H. (2018). Machine Learning - A Quantitative Approach. PerfMath.

Maxwell B. Joseph, M. W. (2019). Spatiotemporal prediction of wildfire size extremes with Bayesian finite
sample maxima. Ecological Aplications, september 2019, 1266-1281.

Page 75 of 76

PANTHEON D4.3

Mulesoft Anypoint. (2024). Retrieved from Mulesoft Anypoint: https://www.mulesoft.com/

Ogata, Y. (1988). Statistical Models for Earthquake Occurrences and Residual Analysis for Point Processes.
Journal of the American Statistical Association, 83(401), 9-27.

PANTHEON - Consortia. (2023). DOA.

Pantheon Consortia. (2024). D3.6-Use Case Scenarios.

Pantheon Consortia. (2024). D3.7 Pantheon System Architecture.
PANTHEON Consortia. (2024). D4.2-Conceptual models.

PMI. (2024). Agile Practice Guide. Retrieved from https://www.agilealliance.org/wp-
content/uploads/2021/02/AgilePracticeGuide.pdf

RabitMQ. (2024). RabitMQ. Retrieved from https://www.rabbitmg.com/

Zannetti, P. (1990). Air Pollution Modeling-Theories, Computational Methods and Available Software-ISBN
978-1-4757-4467-5. Springer.

Page 76 of 76

