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TASK ABSTRACT
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SUMMARY

This document D3.4 provides an extensive overview of the data processing, integration, analysis, and delivery
strategies essential for the PANTHEON project's objective of community-based disaster risk management in
the pilot cities of Athens and Vienna. Here is a summary overview:

Data Processing Technologies

1. Emphasizes the significance of cloud-based big data processing for efficiently managing large datasets,
highlighting technologies like distributed storage (e.g., HDFS, Cassandra), cloud computing services (e.g.,
Amazon EMR, Google Cloud Dataproc), and serverless computing (e.g., AWS Lambda, Azure Functions).

2. Explores emerging technologies such as edge computing and fog computing, illustrating their role in
decentralizing computational tasks and reducing latency by processing data closer to its source. The
impact of 5G/B5G technology on edge data processing capabilities is also discussed.

Data Integration & Fusion

3. Discusses the criticality of integrating diverse data from various sources into a unified representation
within the digital twin to facilitate informed decision-making and enhance urban sustainability.

4. Introduces approaches like the data warehouse and mediator approaches, along with data fusion
techniques and preprocessing methods aimed at harmonizing heterogeneous data.

5. Explores fusion algorithms such as semantic reasoning, fusion through correlation, and decision support
mechanisms to synthesize heterogeneous data into actionable insights.

Data Analysiss

6. Highlights the importance of visualization elements like interactive dashboards, geospatial maps, time-
series charts, and heat maps for transforming data into actionable insights.

7. Discusses the role of notifications in event detection and real-time alerting to stakeholders.

8. Emphasizes the significance of logs for simulation replay and post-processing analysis, enabling a
thorough examination of events contributing to disaster scenarios and facilitating scenario comparisons
and decision support.

Data Delivery Schemes

9. Defines disaster scenarios for Athens and Vienna, outlining associated technologies and data delivery
requirements.

10. Indicates a preference for the JavaScript Object Notation (JSON) format for data delivery, ensuring
compatibility and ease of use across various systems and applications.

11. Highlights ongoing efforts to establish high-performance, automated, and responsive data delivery
schemes capable of integrating data from satellites, in-situ sources, infrastructure, traffic, UAVs, and
community inputs.

Conclusion

12. Concludes by underlining the importance of establishing optimal data delivery schemes to support
community-based disaster risk management in urban environments.

13. Notes a consensus on using JSON format for data delivery, reflecting discussions during project meetings
and ensuring compatibility and ease of use across diverse systems and applications.

14. Provides a comprehensive framework for leveraging advanced data processing, integration, analysis, and
delivery technologies within the PANTHEON project, aimed at enhancing disaster risk management in
urban environments.
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1 INTRODUCTION

A significant challenge for PANTHEON lies into the integration of big data generated from six discrete sources
(Satellite & Copernicus, In-Situ lo, Infrastructure, Traffic, UAVs, Community Data) into the Smart City Digital
Twin. Data integration is essential and involves aggregating data from diverse sources into a cohesive view.

Data integration tools play pivotal role, sifting through heterogeneous data to extract relevant information
from vast structured and unstructured datasets. Selecting the most suitable tool for PANTHEON is crucial. An
evaluation of ten leading data integration tools was recently conducted based on core features, ease of use,
customer support, and annual price. The following tools were assessed: Fivetran, Microsoft SQL Server,
Apache Airflow, Informatica PowerCenter, Pentaho, Talent, MuleSoft AnyPoint Platform, IBM InfoSphere
DataStage, Boomi, and Oracle Data Integrator. For efficiency, it is logical to seek tools that offers high
performance, low maintenance, responsive service, and full automation, whist projects like PANTHEON
leverage existing resources to meet tight deadlines and avoid additional expenditures. Thus, PANTHEON
utilizes the Microsoft SQL Server and Apache Airflow, for data integration, leveraging the expertise and
familiarity of its consortium partners (PhoenixNap, 2024)™.

Data delivery methods encompass the various approaches used to transfer data from one system to another.
Effective data delivery is crucial for analytics and extracting value from Big Data. However, not all data
delivery solutions offer the same advantages. Data is essential to support analytics and ensure consistency
in information systems, facilitating decisions based on a unified version of reality. Data must flow seamlessly
between systems and stakeholders within organizations, as well as across end users and enterprise
boundaries. To address these challenges, numerous data delivery alternatives exist, yet an optimal solution
should embody six key characteristics: Performance, Automation, Ease of Use, Low Maintenance, Readiness
to Use, and Responsive Service (ABT, 2024).

Data Delivery Scheme should aim to streamline the often-laborious process of loading data from source
databases into target databases and data warehouses. It should support both full-load and partial uploads
through real-time Change Data Capture (CDC). The design should empower users to replicate vast amounts
of data effortlessly. Furthermore, the architecture should translate into minimal total cost of ownership for
stakeholders beyond those defined in PANTHEON, that possess the capability to identify and capture critical
events in real-time, thereby enhancing insight, agility, and overall competitiveness (ICICE 2024)3.

e
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2 SCOPE

The PANTHEON Data Delivery Scheme for Community-Based Disaster Relief Management (CBDRM) is tasked
with providing a comprehensive analysis and outlining the requirements of PANTHEON technologies
concerning communication, data, and applications. The aim is to gather and process relevant information
from various community sources, thereby enhancing the speed and accuracy of disaster impact assessments.

PANTHEON aims to furnish updated and valid information during disaster management operations, by
utilizing resources such as Earth observations from Unmanned Aerial Vehicle (UAV) Swarming systems, the
Copernicus system, in-situ observations from Smart City Internet of Things (loT), satellite imagery, real-time
data from Geographical Information System (GIS) sources, social media, mobile apps, and crowdsourcing
applications, The goal is to translate these components into functional and non-functional requirements for
the PANTHEON architecture.

As per the findings of D3.2, reference models should be applied across five main use-case categories,
including two targeting scenarios before the disaster, two during the disaster, and one after the disaster. In
that respect, PANTHEON can be utilized for:

Planning early warning according to simulations (Prevention phase).
Training and exercises (Preparedness phase).

Situational awareness during the disaster (Response phase).
Cross-organization communication during the disaster (Response phase).
Documentation and evaluation after the disaster (Recovery phase).

vk wnN e

The reference models will primarily emphasize prevention & preparedness (P&P) with secondary
recommendations for response & recovery (R&R) measures to be customized by stakeholders and end-user
communities to meet specific requirements. Implementation of measures will be controlled via a Command
& Control (C2) platform depending on the level of automation employed. PATHEON does not deliver a C4l
(command, control, communications, computers, intelligence) platform (Bonazountas et al, 2022)*.
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3 DATADEFINITION

In the realm of scientific discourse, data encompasses a range of values that convey information, including
guantities, qualities, facts, statistics, and symbols subject to interpretation. Each datum represents a single
value within this collection, often organized into structured formats like tables for clarity and relevance.
These structures themselves can serve as data within larger frameworks, functioning as variables in
computational processes to represent abstract concepts or tangible measurements. Data finds extensive use
across scientific research, economics, and various organizational domains. Examples of datasets pertinent to
wildfires, floods, earthquakes include statistics on weather patterns, land use, population demographics, and
disaster response efforts. In this context, data serves as the fundamental building blocks from which valuable
insights and informed decisions can be gleaned (Purdue, 20219)°

Data pertaining to wildfires, floods and earthquakes is collected through diverse methods such as databases,
measurement, observation, querying, analysis. Typically represented as numerical or character-based
formats for further processing, this data originates from uncontrolled real-world environments (field data)
or controlled scientific experiments (experimental data). Analysis of such data involves several techniques
including remote sensing processing, calculation, reasoning, discussion, presentation, visualization, and post-
analysis methodologies. Prior to analysis, raw data undergoes cleaning procedures to address outliers and
rectify instrument or data entry errors (Bonazountas et al, 2005)°

Data serves as the cornerstone for calculation, reasoning, and discussion within scientific discourse. Ranging
from abstract concepts to tangible measurements, including statistical figures, data gains significance when
organized thematically within relevant contexts, transforming into actionable information. Interconnected
pieces of contextual information culminate in data insights or intelligence. The accumulation of insights and
intelligence over time, derived from synthesizing data into information, is often termed knowledge.

In the contemporary digital landscape, the proliferation of computing technologies led to an advent of big
data, characteristically representing vast quantities of information, often at the petabyte scale. Conventional
data analysis methods and computing infrastructures encounter challenges in handling such massive and
expanding datasets. Theoretically, infinite data would yield infinite information, rendering the extraction of
insights or intelligence impractical. Consequently, the emerging field of data science harnesses machine
learning (ML) and other artificial intelligence (Al) techniques to facilitate the efficient application of analytical
methods to big data. PANTHEON is utilising data that make sense and assist to deliver tangible results,
valuable to stakeholders (Lynggaard, K. 2019)’.

3.1 Tvypres oF DATA

3.1.1 TyPEeS OF DATA SOURCES

Data sources refer to physical or digital locations where information is stored in formats such as data tables,
data objects, or other storage formats. The most prevalent types of data include (Bonazountas, Woldbak,
Hellenic Civil Protection, 2023)8:

1. Structured, unstructured or semi-structured data
a) Structured data is a standardised format to providing information about a page and classifying the
page content, i.e., Excel files with the names of Consortium Partners, their postal and email addresses
or Standard Query Languages (SQL) databases.
b) Unstructured data is the compilation of many various types of data that are stored in their native
formats, i.e., social media, images, audio, video and text files.
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¢) Semi-Structured data sources include emails, CSVs, XML and other markup languages, binary
executables, zipped files or webpages. This category was introduced because it is easier to analyse
than unstructured data.
2. Bigdatalike the three types of data (i.e., structured, unstructured, or semi-structured data) is a collection
of data from different sources and characteristics as the 5Vs ( volume, value, variety, velocity, veracity).
3. Internal data comprises facts and information originating from an organization's systems. In many
instances, external parties access/analyse internal data without explicit permission of the owning entity.
4. External data originates outside an organisation and is readily available to the public.
5. Third party analytics data is collected and managed by organisations that do not directly interact with
its customers (e.g., data sets compiled from governmental, non-profit or academic sources.
6. Open data is openly accessible to all, including companies, citizens, media, consumers. Content can be
freely used, modified, and shared by anyone (e.g., environmental data).

In the context of PANTHEON, data sources for Disaster Risk Management (DRM) are delineated to the six (6)
streams: (1) Satellite, (2) In-Situ, (3) Infrastructure, (4) Traffic, (5) Unmanned Aerial Vehicle (UAV), (6)
Community. Each of these sources constitutes Open and External data, with some potentially falling under
the category of big data, contingent upon the complexity of the pilot cases being utilized. Additionally, several
pertinent sub-types of data sources, likely to be employed in the PANTHEON project, are identified below:

3.1.2 GEOSPATIAL DATA

Geospatial Data® encompasses vast collections of spatial data sourced from various outlets in diverse
formats. It may include census data, satellite imagery, weather data, cell phone data, drawn images, and
social media data. Geospatial data proves invaluable when discoverable, shareable, analyzable, and
amalgamated with conventional business data. Consequently, it plays a pivotal role in disaster impact
assessments (Bonazountas, 2017)%°.

Formats such as Geographic JavaScript Object Notation (GeoJSON), Vector/Shape geodata, or Raster geodata
(GeoTIFFs) are commonly utilized for representing geographic information. These formats facilitate the
integration of various data types such as terrain elevation, land use, and infrastructure due to their inclusion
of geographic information, including maps, coordinates, and spatial attributes.

Geographic Information Systems (GIS) are processing and mapping data via “layered” visual representations.
For instance, when overlaying a hurricane map (depicting location and time) with another layer illustrating
potential areas for lightning strikes, GIS functionality becomes evident. Consequently, geospatial data
enables the visualization and analysis of the spatial aspects of disasters. ArcGIS/ESRI is a leading s/w
technology.

3.1.3 TIME SERIES & SENSORS DATA

This category encompasses data sourced from diverse outlets such as weather stations, remote sensing
satellites, and Internet of Things (loT) devices, offering real-time information. Common data formats include
databases like Standard Query Language (SQL) or NoSQL, Java Script Object Notation (JSON), Comma
Separated Values (CSV), or specialized formats tailored for specific sensor types (e.g., NetCDF for climate
data). Standards like MQTT and Extensible Markup Language (XML) are frequently employed for transmitting
loT sensor data (Bonazountas, Arc/FIRE, 2007)*

3.1.4 REMOTE SENSING DATA

Formats such as satellite imagery, aerial photographs, and drone-captured data offer visual insights into
disaster-affected areas (Bonazountas, 2022)*

e
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3.1.5 3D MoODELS DATA

For simulating and visualizing disaster scenarios in 3D space, formats like COLLADA (DAE) or GeoTIFFs are
utilized to represent 3D models of buildings, terrain, and infrastructure (Bonazountas, SEIS, 2015)*3

3.1.6 PANTHEON DASHBOARD

To overcome the difficulty of integrating data from various sources such as Building Information Modelling
(BIM), Geographic Information System (GIS) and Internet of Things (loT), PANTHEON is to expand and

upgrade data import and integration capabilities, by providing the ability to import data types into a common
dashboard.

3.1.7 STtATIC, DYNAMIC, REAL, SYNTHETIC DATA

3.1.7.1 Static Data

Static data refers to information that remains unchanged or infrequently updated over time. It serves as a
reference or guideline for other data and typically does not require frequent updates or alterations. Examples
of static data in the PANTHEON context include infrastructure data, reports or records generated by human
resources, and information about past incidents such as wildfires, earthquakes, heatwaves, floods, terrorist
attacks, or cyberattacks.

3.1.7.2 Dynamic Data

In data management, dynamic or transactional data refers to information that undergoes periodic updates,
evolving asynchronously over time as new information emerges. This concept holds significance in data
management, as the temporal nature of the data dictates its processing and storage methods.

3.1.7.3 Real & Synthetic Data

Real data is collected from genuine events, while synthetic data is artificially generated by computer
algorithms. In recent years, there has been a burgeoning interest in employing synthetic data for diverse
applications, including machine learning and data analytics. According to Gartner, by 2030, the utilization of
synthetic data in Al (Artificial Intelligence) models is projected to surpass that of real data.

3.1.7.4 Synthetic Data Creation

While various methods exist for generating synthetic data, Al-generated synthetic data is crafted by Al
models trained on intricate real-world datasets, leveraging the capabilities of deep learning algorithms. The
advantage of employing generative Al lies in its ability to autonomously discern patterns, structures,
correlations, and other complex relationships within real data. Subsequently, the Al model learns to generate
entirely new data instances while preserving the inherent patterns observed in the original dataset. This
structural similarity is visually apparent (TONIC 2024, Figure 1)1,

A prevalent technique involves generating data through computer algorithms that emulate the behavior
observed in real-world datasets. This method enables the creation of synthetic datasets that closely resemble
real datasets in terms of their distribution and variability. Another commonly employed approach for
generating synthetic data is utilizing a random number generator to produce data adhering to specific
statistical distributions, devoid of any inherent correlations.

_
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Figure 1: Original and Synthetic Data (TONIC, UK Government, 2024)

7.5 Benefit of synthetic data vs real time data

There are several advantages to using synthetic data over real data?:

1.

10.

11.

Overcoming regulatory restrictions: Synthetic data bypasses regulatory constraints associated with real
data, as it replicates essential statistical properties without compromising privacy. This eliminates
concerns regarding privacy regulations and facilitates:

Privacy preservation: Traditional anonymization methods often compromise data utility while protecting
privacy; this privacy/utility trade-off by eliminating the need to safeguard real data.

Resistance to reidentification: Real data, even after anonymization, can still be reidentified. Synthetic
data mitigates this risk, as it does not contain identifiable information.

Aptitude for innovation and monetization: Synthetic data can be shared with third parties for research
and innovation purposes without privacy concerns, offering opportunities for monetization.
Streamlines simulation: Synthetic data enables the generation of data to simulate scenarios not yet
encountered. In instances where real data is unavailable, synthetic data provides the only viable solution.
For example, automotive companies may use synthetic data to train smart cars for situations not
captured in real-world data.

Statistical issues: Synthetic data is immune to common statistical problems such as item non-response
and skip patterns. By carefully designing rules for data generation, synthetic data can be created to avoid
these pitfalls, ensuring robust statistical analyses.

Speeds up the process: Synthetic data can be generated much faster than real data can be collected,
saving time and enhancing agility and competitiveness in the market.

Achieves higher consistency: Synthetic data is more uniform and consistent than real data, which may
exhibit variability due to its natural origins. This consistency facilitates accurate analyses on synthetic
datasets.

Ensures easy manipulation: Synthetic data can be manipulated more easily than real data in a controlled
manner, enabling precise testing and training of machine learning models. It can be generated in large
quantities with specific characteristics and biases, enhancing performance in various applications.
Increases cost-effectiveness: Synthetic data can be more cost-effective than real data. While there are
upfront costs associated with building simulations for synthetic data generation, the recurring costs of
collecting and revising real data are avoided.

Facilitates Al/ML training: Synthetic data is valuable for training Al/ML models, as it is not subject to the
regulations governing real data and can be generated in abundance. This enriches model training and
enhances learning capacity.
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3.1.7.6 Challenges with using synthetic data against real data

In addition to the array of benefits the utilization of synthetic data presents several challenges as (Datomize,

2024)":

1. Biased or deceptive results: Synthetic data may yield misleading, constrained, or discriminatory
outcomes due to its limited variability and correlations.

2. Lack of accuracy: Synthetic data is often generated using computer algorithms, which may not always
produce accurate representations. Consequently, synthetic data runs the risk of occasionally generating
inaccurate results.

3. Time-consuming verification steps: Synthetic data necessitates additional verification procedures, such
as comparing model outputs with human-annotated real-world data. These verification efforts are time-
intensive and can prolong project timelines.

4. Loss of outliers: Synthetic data may fail to encompass outliers present in the original dataset, as it can
only mimic but not perfectly replicate real-world data. However, outliers may hold relevance for certain
research endeavors.

5. Dependency on real data: The quality of synthetic data is often contingent upon the quality of the real
dataset and model utilized for its creation. Without a robust and high-quality real dataset, synthetic
datasets generated from it may prove ineffective or even erroneous.

6. Consumer scepticism: As the use of synthetic data becomes more prevalent, businesses may encounter

consumer scepticism regarding the credibility of data-driven conclusions and products. Consumers may
demand transparency regarding data generation techniques and assurance of their data privacy.

3.1.8 DATA FORMAT & DELIVERY MODES

3.1.8.1 Data Format

Data format plays crucial role in structuring and representing information, especially in disaster impact
assessments. Several common data formats include (FEMA, 2024)*8:

1.

Numerical data encompasses two primary types: (a) discrete and (b) continuous. Discrete data comprises
specific or fixed values, such as the number of people in an institution, and can be displayed via Bar
Charts. On the other hand, continuous data falls within a given range of values, is measurable, and is
graphically depicted using Histograms.

Textual data refers to information conveyed in written or printed form, encompassing sources like books,
articles, surveys, social media posts, chat conversations, and emails.

Image data is generated by scanning a surface with an optical or electronic device and includes examples
like scanned documents, remotely sensed data (e.g., satellite images), and aerial photographs. Images
are stored as raster datasets of binary or integer values representing the intensity of reflected light, heat,
or other values on the electromagnetic spectrum.

Above formats can be further categorized as structured, unstructured, or geospatial:

Structured Data: Structured data, organized in rows and columns, can be employed to store information
such as historical wildfire occurrence records, fire weather data, and fuel moisture content. These
structured datasets can aid in analysing trends, identifying high-risk areas, and developing predictive
models for wildfire behaviour.

Unstructured Data: Unstructured textual data, including reports from fire incident commanders, news
articles, and social media posts, can provide valuable contextual information about ongoing wildfires.
Natural language processing techniques can be utilized to extract relevant insights from these sources,
helping emergency responders gain a comprehensive understanding of the current wildfire situation.
Geospatial Data: Geospatial data, including satellite imagery, aerial photographs, and maps, is
instrumental in wildfire management. Satellite imagery can be used to detect active fire hotspots,
monitor fire spread, and assess burn severity. Aerial photographs provide detailed views of wildfire-
affected areas, aiding in damage assessment and post-fire recovery efforts. Maps, containing geographic
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features such as vegetation types, road networks, and water sources, facilitate strategic planning and
resource allocation during wildfire response operations (Zhou, G., et al. 2023)%°.

The mentioned data formats are instrumental in wildfire, flood, and earthquake management by facilitating
the integration of critical geographic information. This integration encompasses various data types such as
terrain elevation, land use, and infrastructure, which include essential geographic details like maps,
coordinates, and spatial attributes. Geographic Information Systems (GIS) utilize geospatial data to visualize
and analyse the spatial dimensions of these natural disasters, and for (Bonazountas, 2015)°:

o wildfires, geospatial data enables the mapping of fire-prone areas, identification of fuel types, and
assessment of fire behavior based on terrain elevation. It also aids in planning evacuation routes, locating
fire suppression resources, and assessing post-fire impacts on landscapes and ecosystems.

o floods, geospatial data assists in delineating floodplains, identifying vulnerable infrastructure such as
bridges and roads, and predicting flood extents based on terrain elevation and land use patterns. GIS can
also be utilized to model flood scenarios, assess flood risk, and develop floodplain management
strategies.

o earthquake management, geospatial data plays a crucial role in identifying seismic hazard zones,
assessing building vulnerability, and planning emergency response routes. GIS enables the visualization
of earthquake shaking intensity maps, identification of critical infrastructure at risk, and prioritization of
retrofitting efforts to enhance community resilience.

e overall by leveraging these data formats within GIS frameworks, emergency managers and decision-
makers can gain valuable insights into the spatial characteristics of wildfires, floods, and earthquakes.
This enables proactive planning, effective response coordination, and informed decision-making to
mitigate the impacts of these disasters on communities and infrastructure.

3.1.8.2 Data delivery mode

Efficient data delivery modes play a pivotal role in ensuring that pertinent scientific insights reach decision-
makers promptly and efficiently, especially in the context of wildfires, floods, and earthquakes. Several key
delivery modes are indispensable in disaster management. Efficient data delivery methods are critical for
effective management of wildfires, floods, and earthquakes. Here are tailored delivery modes for these
disaster scenarios (Cao, L. et al 2023)%:

1. Real-Time Data Streaming: Continuous data streams from sensors, satellites, and monitoring networks
facilitate the instantaneous flow of real-time information. Protocols like MQTT or Web Socket enable
swift transmission of critical data, empowering decision-makers to respond promptly to evolving disaster
situations.

2. Cloud-based Storage/Data Integration Platforms/APIs & Web Services: Leveraging cloud-based storage
solutions, data integration platforms, and APIs ensures standardized access to data with scalable storage
and processing capabilities. This enables seamless integration and retrieval of data across various
systems and applications, facilitating efficient management and sharing of large datasets among
stakeholders and end-users. Cloud storage solutions provide scalability and accessibility, ensuring critical
data remains readily available during disaster events.

3. Mobile Data Delivery: Mobile technology and applications enable field personnel to access and
contribute to real-time data delivery. This facilitates communication between remote areas and central
command, enabling informed decision-making during disaster response efforts. RESTful APIs or GraphQL
endpoints can be utilized to deliver data from diverse sources to digital twin platforms, enhancing
situational awareness and decision support capabilities.

4. Batch Processing: For historical analysis or batch updates of data, batch processing modes such as data
pipelines are invaluable. Tools like Apache Kafka or Apache Spark streamline batch processing workflows,
enabling comprehensive analysis and reporting. Recent reports from KEMEA indicate the maintenance
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of historical data spanning the last decade concerning wildfires and floods in the Athens region,
highlighting the importance of batch processing for historical analysis and trend identification in disaster
management.

3.1.9 DATAON EARTH OBSERVATION, UAV, IN-SITU, IOT, AND COPERNICUS SERVICES

Earth observation (EO) data involves collecting information about the Earth's surface, atmosphere, and
oceans using remote sensing technologies like satellites, drones, and ground-based sensors. This data is
crucial for various applications, including disaster management. Here are key points about EO data (EEA,
2023)%%:

1.

Remote Sensing Technologies: (a) Satellites: Capture images and data from space, equipped with sensors
such as optical, radar, and specialized instruments, (b) Unmanned Aerial Vehicles (UAVs): Used for data
collection, offering various types and capabilities depending on weight, propulsion, and sensors.

Types of Earth Observation Data: (a) Optical Imagery: Visible and infrared light for land cover
classification, agriculture monitoring., (b) Radar Imagery: Microwave frequencies for all-weather
imaging, useful for land cover changes and terrain mapping, (c) Thermal Infrared Imagery: Measures heat
radiation, beneficial for detecting wildfires and urban heat islands, (d) Hyperspectral Imagery: Captures
various wavelengths for detailed material analysis, useful for mineral exploration

Applications of EO Data: (a) Environmental Monitoring: Track changes in land use, deforestation, and air
quality, (b) Natural Resource Management: Manage forests, water, and minerals efficiently, (c) Disaster
Response: Assess impact and support response efforts for disasters like hurricanes, earthquakes, and
floods, (d) Agriculture: Monitor crops, predict yields, and practice precision agriculture, (e) Climate
Studies: Contribute to understanding climate patterns and changes in sea levels, ice cover, and
atmospheric conditions.

Data Providers: (a) Organizations like NASA, ESA, NOAA, and private companies operate satellites and
provide EO data to the public.

Challenges: (a) Data Volume: Large datasets require advanced storage and processing capabilities, (b)
Data Access and Sharing: Ensuring global access and promoting data sharing remains a challenge, (c) Data
Integration: Integrating EO data with ground-based measurements is essential for comprehensive
analysis.

In PANTHEON, EO data primarily comes from satellites, including services like Copernicus, Landsat, and VIIRS
(Bonazountas, 2023)%3:

o

Copernicus Services: Provides various data formats like GeoTIFF, GeoJSON, and NetCDF. Offers
structured metadata for data details like acquisition date, sensor specifications. Provides access through
Web Map Services (WMS) and APIs for data retrieval

Landsat Services: Provide images of Earth's surface, distributed by USGS EROS. Sensors acquire data in
different frequency ranges with varying spatial resolutions.

UAVs: Used for detailed data collection, offering high-resolution imagery and LiDAR scanning. Data can
be transmitted in real-time or stored onboard for later processing.

In-Situ Sensors: Provide real-time data for continuous monitoring of environmental conditions.
loT-based weather stations offer detailed weather information transmitted in JSON format.
PANTHEON: Efficiently managing and utilizing these diverse data sources is essential for informed
decision-making and effective disaster management in PANTHEON.
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3.1.10 DATA THEMES FOR USE CASES DURING THE PHASES OF DISASTER MANAGEMENT

Based on D2.2 this chapter contains considerations about the use cases in the pilot regions.

3.1.10.1 Athenian Demonstrator

Greece, particularly the Attica region where the capital Athens is located, is prone to both seismic activity
and wildfires, presenting significant challenges for disaster management efforts.

The Attica region has a history of devastating seismic events, with notable earthquakes occurring in 1938,
1953, 1981, and 1999. These earthquakes have resulted in loss of life, damage to critical infrastructure, and
the collapse of buildings, alongside secondary effects like landslides and soil liquefaction. Given that nearly
half of Greece's population resides in the Athens metropolitan area and the broader Attica region,
earthquake scenarios are of paramount importance in disaster preparedness and response planning.

In addition to seismic risks, wildfires have emerged as a major concern in recent decades, particularly during
the summer months. The mountains surrounding Athens, including Parnitha, Penteli, and Imittos, have been
significantly impacted by wildfires. The devastating August 2018 wildfire, which swept through the suburb of
Mati, resulted in the tragic loss of 103 lives and underscored the urgency of addressing wildfire scenarios in
disaster management plans.

While earthquakes and wildfires are primary hazards, other scenarios such as floods, exemplified by the
catastrophic events in the suburb of Mandra in 2017, and the potential for terrorist attacks, further
complicate disaster preparedness efforts. The likelihood of such events occurring is influenced by the
complex geopolitical dynamics of the South-East Mediterranean region.

Given the complexity of simulating these hazards and the limited time available of PANTHEON, the selection
of scenarios for exercise is crucial. The aim is to produce actionable insights for first responders and
stakeholders based on current experiences and the most likely scenarios. For first responders, this may
involve updating action checklists, while stakeholders may need to revise preparedness plans to enhance
resilience and response capabilities. By focusing on the most probable and impactful scenarios, disaster
management efforts can better mitigate risks and protect communities in the Athens region.

3.1.11 VIENNA DEMONSTRATOR

In the context of Vienna, two significant disaster scenarios emerge as focal points for preparedness and
response efforts: heatwaves and wildfires, each presenting unique challenges and considerations.

Heatwaves are a prevalent threat during the summer months in Central and Northern Europe, including
Vienna. The absence of widespread air conditioning in residential areas, coupled with limited availability of
ambulances and medical personnel due to summer vacations, exacerbates the vulnerability of elderly and at-
risk individuals during extreme heat events. Therefore, preparing for and responding to heatwaves is crucial
to safeguarding public health and reducing heat-related ilinesses and fatalities.

Vienna also faces the potential risk of wildfires triggered by man-made events, such as a cyber-attack
targeting critical infrastructure like a power plant. A cyber-attack on a power plant could ignite a fire capable
of spreading rapidly through the surrounding forested areas, including the outskirts of Vienna. This scenario
highlights the interconnectedness of infrastructure vulnerabilities and environmental risks, underscoring the
need for comprehensive disaster preparedness and response strategies.

By selecting these scenarios for simulation exercises, stakeholders can evaluate and enhance their readiness
to address both natural and man-made disasters effectively. The choice of a cyber-terrorism trigger for the
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wildfire scenario allows for the exploration of cascading effects and interagency coordination in response to
unexpected events. Through collaborative training exercises involving first responders, healthcare providers,
law enforcement agencies, municipal authorities, infrastructure providers, and media representatives,
stakeholders can improve their coordination and cooperation in managing complex disaster scenarios.

While the initial focus may be on heatwaves and cyber-triggered wildfires, the development of final scenarios
will be contingent on the complexity of the simulations and the available project timeline. Deliberate
consideration of cascading effects and the potential exclusion of certain elements may be necessary to
ensure the feasibility of the pilot project in Vienna within the project's timeframe. Ultimately, the aim is to
leverage the digital twin platform to strengthen preparedness, response, and resilience across various
disaster scenarios in Vienna and beyond.

3.2 CHARACTERISTICS OF DATA

3.2.1 DATA QUALITY

Given the diverse array of data involved in PANTHEON, ensuring high-quality data is essential for its success.
Establishing a robust data quality framework is paramount to certify the reliability and usefulness of the data
collected and utilized throughout the project. A comprehensive data quality framework comprises various
components, each playing a crucial role in maintaining and enhancing data quality. Here are the key
components of such a framework (Taleb, 2021)%*:

1. Data Governance: Data governance involves establishing policies, procedures, and responsibilities for
managing and safeguarding data assets. It ensures that data is handled consistently, securely, and in
compliance with relevant regulations and standards. For example, in the context of wildfires, data
governance may dictate protocols for sharing satellite imagery data among stakeholders to facilitate
timely response and decision-making.

2. Data Profiling: Data profiling entails analysing the structure, content, and quality of data to identify
anomalies, inconsistencies, or inaccuracies. For instance, in the case of heatwaves, data profiling may
involve examining historical temperature records to detect outliers or data entry errors that could affect
the accuracy of heatwave predictions.

3. Data Quality Rules: Data quality rules define criteria or standards for acceptable data quality. These rules
establish benchmarks against which data quality can be assessed and monitored. In the context of floods,
data quality rules may specify thresholds for river water levels or rainfall intensity, beyond which data is
flagged for review or cleaning.

4. Data Quality Assessment: Data quality assessment involves evaluating the adherence of data to
predefined quality standards and rules. This process may include automated checks, statistical analyses,
and manual reviews to identify and address data quality issues. For example, in the aftermath of a flood,
data quality assessment may involve verifying the accuracy of damage reports submitted by field teams.

5. Data Cleaning: Data cleaning encompasses the process of correcting errors, removing duplicates, and
standardizing data to improve its quality and consistency. In the case of wildfires, data cleaning may
involve reconciling discrepancies between satellite imagery and ground observations to produce
accurate fire perimeter maps for emergency response teams.

6. Data Monitoring: Data monitoring involves ongoing surveillance of data quality metrics and indicators to
detect deviations or anomalies. Continuous monitoring ensures that data remains accurate, timely, and
relevant over time. For instance, in the context of heatwaves, data monitoring may involve tracking
temperature trends and heat stress indices to anticipate and mitigate health risks.

7. Data Issue Management: Data issue management refers to the process of documenting, tracking, and
resolving data quality issues and discrepancies. This includes assigning responsibilities, prioritizing issues,
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and implementing corrective actions to address root causes. During a flood event, data issue
management may involve coordinating with data providers to resolve inconsistencies in flood inundation
maps used for evacuation planning.

Data Reporting: Data reporting involves communicating data quality status, findings, and insights to
stakeholders through various reports and dashboards. Clear and transparent reporting facilitates
informed decision-making and accountability. For example, in the context of wildfires, data reporting
may involve disseminating real-time fire behaviour forecasts and evacuation orders to emergency
responders and the public.

Continuous Improvement: Continuous improvement is an ongoing process of refining and enhancing the
data quality framework based on feedback, lessons learned, and evolving requirements. Regular
evaluations and adjustments ensure that the framework remains effective and adaptable to changing
needs and circumstances. In the aftermath of a disaster, such as a heatwave, continuous improvement
may involve conducting post-event reviews to identify opportunities for optimizing data collection,
analysis, and dissemination processes.

Implementation of a comprehensive data quality framework encompassing these key components,
PANTHEON can ensure that the data used for disaster management, including wildfires, heatwaves, and
floods, is accurate, reliable, and actionable, ultimately enhancing the effectiveness of response and
mitigation efforts.

3.2.2 DATA INTEGRITY/SECURITY

Ensuring data security (and integrity) is crucial for disaster management, where timely and accurate
information can make a significant difference in response and recovery efforts. Let's enrich the discussion by

incorporating examples from wildfires, floods, and earthquakes (Bonazountas ey al., 2017

1.

)25:

Wildfires: In the case of wildfires, data integrity is essential for assessing the extent of the fire, predicting
its behaviour, and coordinating evacuation efforts. Satellite imagery, weather data, and ground
observations are integrated to map the fire perimeter and identify areas at risk. However, ensuring the
integrity of this data is challenging due to factors like smoke interference with satellite sensors or
inaccurate ground reports. Data security measures must be in place to prevent unauthorized access to
sensitive information, such as evacuation routes or firefighter locations, which could compromise
response efforts.

Floods: During floods, accurate data is critical for assessing flood extent, depth, and velocity to predict
flood behaviour and plan emergency responses. Data sources such as river gauges, rainfall
measurements, and hydraulic models are integrated to create flood inundation maps. However, data
integrity can be compromised by factors like sensor malfunctions, human error in data collection, or
cyber-attacks targeting flood monitoring systems. Implementing robust data security measures is
essential to prevent tampering with flood data, which could lead to inaccurate flood forecasts and
inadequate response measures.

Earthquakes: In earthquake-prone areas, data integrity is vital for assessing seismic activity, identifying
affected areas, and estimating damage severity. Seismic sensors, geospatial data, and building inventory
databases are integrated to create earthquake hazard maps and prioritize response efforts. However,
ensuring the integrity of earthquake data is challenging due to factors like sensor calibration errors, data
transmission delays, or data manipulation by malicious actors. Data security protocols must be
implemented to safeguard seismic data integrity and prevent misinformation that could hamper
emergency response and recovery operations.

Heatwaves: In regions prone to heatwaves, accurate data is essential for assessing temperature trends,
predicting heatwave intensity and duration, and implementing effective heatwave response measures.
Temperature data from weather stations, satellite observations, and urban heat island mapping are

e
Page 17 of 45


https://www.um.edu.mt/library/oar/handle/123456789/39441

(m

PANTHEON

D3.4

integrated to identify areas susceptible to extreme heat events and plan appropriate interventions.
However, data integrity can be compromised by factors like sensor calibration errors, data transmission
glitches, or manipulation of temperature records. Maintaining data integrity is crucial to prevent
misinformation that could impact public health and safety during heatwaves. Implementing robust data
security measures is essential to safeguard temperature data from unauthorized access or tampering,
ensuring the reliability of information used for heatwave risk assessments and mitigation strategies. This
involves encrypting data transmissions, implementing access controls, and conducting regular security
audits to detect and address vulnerabilities in heatwave monitoring systems. Additionally, educating
stakeholders on the importance of data integrity and security measures is essential for building trust in
heatwave data and promoting effective response measures.

PANTHEON overall: By addressing data security challenges and complying with security requirements,
disaster management agencies can enhance data integrity and ensure the reliability of information used
forimpact assessments and decision-making. This involves implementing encryption measures to protect
data in transit and at rest, establishing access controls to limit unauthorized access, and conducting
regular audits to detect and mitigate security vulnerabilities. Additionally, training personnel on data
security best practices and fostering a culture of security awareness are essential for maintaining data
integrity in disaster management contexts.

3.2.3 DATA SECURITY CHALLENGES & CONSIDERATIONS IN DISASTER MIANAGEMENT

Selected issues on data security natural disaster (FIAU 2024, Bonazountas 2022)%%27;

1.

Compliance with Regulations

a) Wildfires: Agencies responsible for wildfire management, such as the Mechanism of the European
Commission's Emergency Response Coordination Centre (ERCC, The Centre monitors wildfire risks
and emergencies across Europe, supported by national and European monitoring services such as
the European Forest Fire Information System EFFIS) must comply with regulations like the European
Health Observatory from Smoke and Wildfires (ADAPT, 2024)%, to protect sensitive health data
collected during wildfire evacuations and medical response efforts.

b) Floods: Flood response agencies, such as European Flood Observatory (EEA, 2024)?° must adhere to
regulations like the European Union's General Data Protection Regulation (GDPR) when handling
personal data of flood-affected individuals during disaster relief operations.

¢) Heatwaves: Health departments monitoring heatwave impacts on vulnerable populations must
comply with regulations such as the European Heatwave Observatory (ADAPT, 2024)% or the US
Health Information Portability and Accountability Act (HIPAA) to safeguard patient data collected
from heat-related illnesses.

d) Earthquakes: Seismological agencies such as the The European-Mediterranean Seismological Centre
(EMSC)?! or the US Geological Survey (USGS) must comply with regulations such as the European
Union's General Data Protection Regulation (GDPR) when sharing seismic data with international
partners.

Complexity

a) Wildfires: Integrating data from satellite imagery, weather forecasts, and ground sensors to predict
wildfire behavior and assess its impact on communities requires sophisticated data management and
analysis tools.

b) Floods: Assessing flood risk and coordinating emergency response efforts involve analyzing complex
datasets, including topographic maps, rainfall forecasts, and floodplain models.

¢) Heatwaves: Monitoring heatwave intensity and duration across urban areas requires integrating data
from temperature sensors, satellite observations, and urban heat island mapping.
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d) Earthquakes: Analyzing seismic data from multiple monitoring stations to detect earthquake signals
and assess ground shaking intensity demands advanced computational techniques and data
processing algorithms.

Resource Constraints

a) Wildfires: Investing in cybersecurity measures to protect wildfire data from unauthorized access and
cyber threats requires significant financial resources.

b) Floods: Deploying secure data storage systems capable of handling large flood-related datasets may
strain agency budgets.

c) Heatwaves: Training personnel to handle heatwave data securely and comply with data protection
regulations necessitates ongoing investments in workforce development.

d) Earthquakes: Upgrading seismic monitoring networks and implementing encryption protocols to
safeguard earthquake data may require additional funding allocations.

Interoperability

a) Wildfires: Ensuring interoperability between wildfire management systems used by federal,
state, and local agencies to share real-time fire incident data and coordinate response efforts.

b) Floods: Integrating flood risk assessment tools with Geographic Information Systems (GIS)
platforms to visualize flood hazard maps and evacuation routes for at-risk communities.

c) Heatwaves: Connecting temperature monitoring networks with public health databases to
identify heatwave hotspots and target interventions for vulnerable populations.

d) Earthquakes: Establishing data-sharing protocols between international seismological agencies
to facilitate real-time earthquake monitoring and early warning systems.

Training

a) Wildfires: Training fire personnel on secure data handling practices and cybersecurity protocols to
prevent data breaches and ensure the integrity of wildfire incident reports.

b) Floods: Educating emergency responders on GDPR compliance and data protection principles when
collecting and sharing flood-related information with government agencies and relief organizations.

c¢) Heatwaves: Providing healthcare professionals with training on HIPAA regulations and patient
confidentiality when accessing and analyzing heatwave health data.

d) Earthquakes: Conducting workshops and seminars for seismologists and data scientists on best
practices for safeguarding seismic data and preventing unauthorized access.

Implementation of Robust Data Security Measures

a) Wildfires: Implementing encryption protocols and access controls to protect sensitive wildfire
suppression plans and firefighter deployment strategies from cyber threats.

b) Floods: Deploying secure cloud-based platforms with multi-factor authentication to store and share
flood risk assessment data with government agencies and emergency responders.

c¢) Heatwaves: Utilizing secure data transmission protocols and encryption algorithms to safeguard
heatwave vulnerability assessments and public health data collected from temperature monitoring
stations.

d) Earthquakes: Establishing secure data servers with role-based access controls to protect seismic
event catalogs and ground motion records from unauthorized tampering or manipulation.
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3.2.4 DATA SECURITY & COMPLIANCE REQUIREMENTS

Security and compliance requirements are indispensable in disaster impact assessments to ensure data
integrity, privacy, and reliability. In an era marked by an increasing frequency of disasters, the ability to map
relevant scientific knowledge while safeguarding sensitive information is paramount. By addressing these
requirements, disaster management Agencies can expedite their response efforts, minimise damage, and
ultimately save lives. Furthermore, compliance with data protection regulations enhances public trust and
demonstrates a commitment to responsible data management. Balancing the need for security and
compliance with the demands of rapid and accurate disaster assessments is a critical step toward building a
more resilient and prepared world (IMMUTA, 2024)32. Examples related to wildfires, floods, heatwaves, and
earthquakes:

1. Data Encryption: All sensitive data should be encrypted both in transit and at rest to protect it against
data breaches and from unauthorised access. Example: In wildfire management, sensitive data such as
evacuation plans and infrastructure maps are often transmitted between agencies. Implementing end-
to-end encryption ensures that this data remains secure during transit, protecting it from interception
by unauthorized parties.

2. Access Control: Implement robust access control mechanisms to ensure that only authorised personnel
can view or modify sensitive data. Example: During flood risk assessments, access to detailed floodplain
maps and vulnerability assessments should be restricted to authorized personnel within disaster
management agencies. Role-based access control mechanisms can be implemented to ensure that only
individuals with the appropriate clearance can view or modify sensitive flood-related data.

3. Data Backups, Redundancy, and Recovery: Regular data backups and redundancy systems along with
the establishment of Recovery procedures, guarantee data availability even in the case of infrastructure
failures, and prevention of data loss due to cyber-attacks or other disasters. Example: In regions prone
to earthquakes, seismic sensor networks continuously collect data on ground motion and seismic
activity. Implementing robust backup systems and redundancy measures ensures that this critical seismic
data is preserved, even in the event of infrastructure damage caused by earthquakes or other disasters.

4. Data Masking & Anonymization: Personally Identifiable Information (PIl) and other sensitive data should
be masked or anonymized to preserve privacy while still enabling analysis Example: In heatwave
planning, demographic data such as age and health conditions may be used to identify vulnerable
populations. However, to protect individual privacy, this data can be anonymized by replacing identifiable
information with pseudonyms or aggregated into broader categories before analysis.

5. Compliance Audit: Regular audits and assessments should be conducted to ensure adherence to data
protection regulations and industry standards Example: In earthquake risk assessments, geological
survey data and building infrastructure information are essential for predicting seismic vulnerability.
Regular compliance audits ensure that data collection and storage practices adhere to relevant seismic
safety standards and regulations, such as building codes and seismic zoning ordinances.

3.2.5 BENEFITS FROM MAPPING SCIENTIFIC KNOWLEDGE

Security and compliance requirements are fundamental considerations when mapping relevant scientific
knowledge for disaster impact assessments, yielding numerous benefits, including (Nature 2017)33:

1) Enhanced Data Trustworthiness: Secure and compliant data instills confidence among decision-makers,
ensuring that the information utilized for assessments is dependable and accurate.

2) Regulatory Compliance Assurance: Adhering to data protection regulations not only mitigates legal
complexities but also fosters public trust in disaster management endeavors, showcasing a commitment
to accountability and transparency.
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3) Resilience Against Cyber Threats: By implementing robust encryption and access controls, disaster
management teams fortify their defence against cyber threats, safeguarding critical data and
infrastructure from potential breaches and disruptions.

Example for Wildfire Management: In the realm of wildfire management, ensuring the security and
compliance of data utilized for assessing fire risks and devising response strategies is paramount. By adhering
to stringent data protection regulations and implementing encryption measures, wildfire management
agencies can inspire confidence in decision-makers and the public regarding the reliability of the information
used. Moreover, by proactively addressing cybersecurity threats through access controls and encryption
protocols, these agencies bolster their resilience against potential cyberattacks targeting critical wildfire
management data and systems.

3.2.6 DATA AVAILABILITY

Uninterrupted access to data is indispensable during disaster response and recovery, underscoring the
importance of resilience against cyberattacks and infrastructure failures. This resilience is particularly critical
in scenarios such as wildfires, floods, heatwaves, and earthquakes, where timely access to accurate data can
mean the difference between effective response and widespread devastation (Taylor & Fransis, 2024)3*. For
example, for

e Wildfires, access to real-time data on fire behaviour, weather patterns, and evacuation routes is essential
for firefighting agencies to make informed decisions and allocate resources effectively. In the event of a
flood, access to flood maps, water level sensors, and evacuation orders is crucial for authorities to
coordinate evacuations and deploy emergency services to affected areas promptly.

e Heatwaves, access to data on temperature forecasts, vulnerable populations, and cooling centres is
vital for public health agencies to implement heatwave preparedness measures and prevent heat-
related illnesses and fatalities. In earthquakes, access to seismic activity data, building vulnerability
assessments, and emergency response plans is indispensable for local authorities to assess damage,
prioritize rescue efforts, and coordinate disaster response activities.

e Overall to ensure uninterrupted access to data during such disasters, redundancy and backup systems
are essential. By maintaining redundant data storage systems and implementing backup protocols,
organizations can mitigate the risk of data loss due to cyberattacks, infrastructure failures, or natural
disasters. Whether storing data on-premises or in the cloud, establishing secure and accessible data
repositories is crucial for ensuring that critical information remains available when needed most,
enabling effective disaster response and recovery efforts
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The PANTHEON Architecture was recently produced (Figure 2. In a similar way the Logical Architecture is also
presented in the following Figure 2. The presented architecture is not the final and may be updated
depending on the availability of data, thus is considered a living one to be finalised by delivery T3.7 and WP4.
The layered architecture is presented in Figure 3
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Figure 2: The PANTHEON Architecture (THL, 2023)
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4.1 DATA ACQUISITION & ADMINISTRATION

Data is obtained from six distinct sources: (1) Satellites and Copernicus, (2) In-Situ loT, (3) Infrastructure (e.g.,
electricity, telecommunications, and water maps), (4) Traffic, (5) UAVs, and (6) Community input. The
management of data originating from multiple sources poses several challenges that must be addressed to

ensure the quality of the outcomes required during the various phases of administration. These phases
typically encompass Curation, Pre-processing, Post-processing, and Storage, each of which is described
below:

1.

Curation involves organizing and integrating data collected from various sources related to wildfires,
floods, heatwaves, and earthquakes. For example, in the case of wildfires, data collected from satellites,
UAVs, and ground-based sensors, it involves annotating wildfire boundaries, identifying fire severity
levels, and publishing this information in a format that can be easily accessed and interpreted by
stakeholders such as emergency responders and policymakers. Similarly, for floods, curation may involve
organizing data on precipitation, river levels, and flood extents obtained from remote sensing platforms
and in-situ sensors. This curated data helps in understanding flood dynamics and assessing potential
impacts on communities. In the context of heatwaves, curation may entail compiling data on
temperature, humidity, and heat indices from weather stations and loT devices. This curated information
assists in identifying heat-prone areas and implementing targeted interventions to protect vulnerable
populations. For earthquakes, curation may involve integrating seismic data, ground motion recordings,
and building vulnerability assessments. This curated data helps in assessing earthquake hazards and
developing strategies for mitigating risks to infrastructure and communities. Overall, curation ensures
that data relevant to wildfires, floods, heatwaves, and earthquakes is organized, annotated, and
presented in a manner that facilitates its effective use for decision-making and disaster response.

Pre-processing is crucial for preparing raw data into a clean dataset suitable for analysis. This step
ensures that the data is free of errors, inconsistencies, and missing values before it is fed into algorithms.
There are four main steps involved in data preprocessing:

a. Data Quality Management: This involves maintaining high-quality information from data
acquisition to distribution. In the context of disaster management, this could mean ensuring that
wildfire data collected from satellites, ground sensors, and UAVs is accurate and reliable, or
verifying the integrity of flood data obtained from river gauges and weather stations.

b. Data Cleansing/Validation: This step ensures that the data has undergone cleansing processes to
confirm its quality and usefulness. For example, in the case of heatwaves, validation routines
may check temperature data for accuracy and consistency, ensuring that it reflects actual
environmental conditions.

c. Data Transformation: This process involves converting, cleaning, and structuring data into a
format suitable for analysis. In the context of earthquakes, data transformation may involve
converting seismic readings and ground motion data into standardized formats that can be
integrated with other datasets for analysis.

d. Data Reduction: This optimization technique involves simplifying data to free up storage
capacity. For instance, in flood management, data reduction may involve aggregating detailed

rainfall data into summary statistics to reduce storage requirements while retaining essential
information.

e. Overall, dcuration and preprocessing are critical steps in PANTHEON, particularly in ensuring that
data from various sources are harmonized and standardized for integration into the Smart-City
Digital Twin. This facilitates the development of simulation models for disaster scenarios
considered: wildfires, floods, heatwaves, and earthquakes.
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3. Processing involves manipulating data using computer systems, encompassing tasks such as converting
raw data into a machine-readable format, managing data flow through the CPU and memory, and
formatting or transforming output. In the context of the PANTHEON project, two prominent processing
methods are utilized: Batch Processing and Stream Processing.

a. Batch Processing: This method involves the execution of data processing tasks in batches, where
data is collected, processed, and outputted in discrete units. For example, in wildfire
management, batch processing may be employed to analyze historical fire data collected over
specific time intervals to identify trends and patterns in fire occurrence.

b. Stream Processing: Stream processing involves the real-time analysis of data streams as they are
generated. In flood monitoring, stream processing can be used to continuously analyze sensor
data from river gauges to detect sudden changes in water levels indicative of potential flood
events.

4. Post-processing occurs after primary data processing stages are completed and involves refining data to
derive objective indicators and measures. In PANTHEON, post-processing enables the extraction of
actionable insights and scenario results, as outlined in paragraph 4.3.3. For instance, after analysing
earthquake simulation data, post-processing techniques may be applied to derive seismic risk
assessments and vulnerability maps for affected areas.

5. Storage refers to the retention of data using various recording media and devices. Due to the substantial
volume of data generated and utilized in PANTHEON, multiple repositories are employed:

a. The first repository is the Partners repository (BOX), established by the coordinator for storing
project deliverables.

b. The second repository is the Zenodo repository of the CERN EOS Service, which boasts an 18
petabytes disk cluster with redundant copies of each file stored on different disk servers. This
redundancy ensures data security and integrity, facilitating seamless retrieval and reuse for the
project's duration and beyond.

4.1.1 ATHENS DEMONSTRATOR

The PANTHEON tool will undergo deployment, testing and evaluation through scenarios: wildfire occurrence
and earthquake events. As delineated in D3.2 Report on Participatory Design, two distinct applications
labelled focusing on the pre-catastrophic phases of the disaster cycle: prevention and preparedness. The
system will undergo testing across two primary dimensions (Spiteri, N.; Epsilon Malta, 2024):

1. Planning and Early Warning through Simulations: This aspect involves utilizing PANTHEON to simulate
real-life events and assess planning and early warning mechanisms.

2. Training and Exercises: PANTHEON will be utilized for training and conducting exercises to enhance
stakeholders' preparedness and response capabilities.

4.1.1.1 Wildfire Demonstrator

The wildfire scenario will serve as a basis to simulating real-life events through training and exercises.
PANTHEON is designed to integrate various data sources to support stakeholders, improve implemented
procedures, and enhance capabilities in wildfire prevention and preparedness, corresponding to the initial
phase of wildfire management.

Of particular interest for the prevention phase are data sources such as weather. This information can be
obtained remotely using weather satellites or from in-situ sources like meteorological stations. Numerous
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weather stations in Greece, including those in the Attica Region, are managed by organizations such as the
Hellenic National Meteorological Service and the National Observatory of Athens. These stations provide
real-time measurements of critical meteorological parameters essential for wildfire risk assessment,
including wind direction and speed, humidity, and temperature. Error! Reference source not found. i
llustrates an example of near real-time weather data for Athens, showcasing the type of information available
for wildfire prevention efforts.

chalklda Stations: Elefsis (Hel-Afb

The temperature is 12°C with 62% humidity.

Sky Conditions: Few Clouds at 760 meters AGL

Weather Condition: Mo significant weather present at this time.

Visibility: 7,700 m

Figure 4: Near real-time weather data for Athens

Vegetation and land cover data play a critical role in wildfire risk assessment as they offer insights into the
vegetation type and fuel availability within a given area. Information on vegetation type, density, and
moisture content aids in estimating potential fuel loads and the rate of fire spread. By combining vegetation
data with meteo-info, areas with a high likelihood of wildfire occurrence can be identified. Satellite data form
the Copernicus Global Land Service provide valuable evidence on vegetation, dry matter productivity, and
Other land cover and land use factors.

Fire propagation models utilize various data sources and algorithms to simulate and predict the behaviour
and spread of fires under different conditions. Key data sources include fuel-soil characteristics, weather
conditions, topography, and ignition points. By integrating these data, fire propagation models can effectively
forecast the potential evolution of a fire, enabling stakeholders to prepare and take pre-emptive actions.
These models facilitate proper allocation of operational resources.

Landscape visualization is crucial for understanding and mitigating wildfires, as terrain features such as slope,
elevation, and topography significantly influence firefighting strategies and fire behaviour. A digital elevation
model (DEM) provides essential information for assessing terrain characteristics. Figure 6 illustrates a three-
dimensional example in Athens, where satellite imagery is overlaid with a DEM to visualize the landscape.

_
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Figure 6: Athens DEM from satellite imagery (Epsilon, 2024)
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Historical Fire Data: Historical weather data are crucial as they provide insight into past fire behaviour under
specific meteorological conditions. Data on past wildfire events, including occurrence, size, and behaviour,
can offer valuable insights into fire patterns and aid in identifying high-risk areas.

In-situ Sensor Data: Ground-based sensors, such as fire danger rating systems, provide real-time information
on fire conditions, aiding in early detection and warning.

Info on Critical Infrastructures (Cl): In addition to factors directly related to wildfire occurrence, stakeholders
require access to information about critical infrastructures (Cls), including their exact location,
interdependency with other infrastructures, and potential impact in case of disruption. Data related to
transportation, energy, traffic, and mapping of natural gas pipelines or power lines are important
considerations.

Integration with Legacy Systems/Platform: PANTHEON SCDT should seamlessly communicate and exchange
real-time information with existing tools used by first responders. For example, the Fire Hub service used by
the Hellenic Fire Service provides real-time wildfire information and a GIS-based platform with historical
event data. The system should facilitate bidirectional communication with other tools, such as the ENGAGE
IMS/CAD solution used for incident management. Additionally, social media crawling and monitoring citizen
posts on webpages and social media platforms can serve as a significant source of real-time information
about ongoing events.

Information on Operational Resources: Stakeholders, particularly first responders in Command & Control
(C2) centers, require data on operational personnel, vehicles, and resources available at all times. This
information enables accurate decision-making regarding the mobilization of forces to respond to wildfire
events.

Infrared Data: UAVs equipped with infrared cameras can detect and map active hotspots during nighttime
firefighting operations without disrupting daytime efforts. These drones should capture GPS metadata and
have known camera specifications, enabling the use of GIS software to generate orthophotos and digital
surface models for extended analysis capabilities.

Other Data: Demographic and urban planning data, such as population density, vulnerable citizens, spatial
plans, evacuation routes, and open spaces, are crucial sources of information to be considered and integrated
within the system. This ensures that disaster management stakeholders are better prepared in the event of
a large wildfire.

4.1.1.2 Earthquake Demonstrator

The earthquake demonstrator serves as the foundation to evaluate PANTHEON as an early warning tool for
aid stakeholders in planning & preparedness to managing incidents. Earthquakes pose significant challenge,
particularly during the prevention & preparedness phases of the disaster management cycle, primarily due
to the limited competence for seismic prediction. While maps indicating probability of earthquake
occurrence and timeframes exist, the ability for precise prediction remains limited. Below are outlined data
sources that should be integrated into PANTHEON to enhance earthquake planning:

Statistical data on buildings and their attributes: The Hellenic Statistical Authority serves as the primary
source of building-related data in Greece, offering information on factors such as the number of buildings in
specific areas. This data includes details on structural characteristics like building materials, number of floors,
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roofing materials, year of construction, and usage. Additionally, upon request, the Authority can provide
supplementary data such as building density per city block.

Demographics & spatial data: Similar to the wildfire scenario, demographic data plays a vital role in informing
disaster management experts, first responders, and urban planners. Demographic data primarily pertains to
population figures, including numbers and densities, while spatial data encompasses information on open
spaces and evacuation routes. This information aids civil protection experts in developing effective

evacuation and sheltering plans.
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Figure 7: Population affected by an earthquake in Athens (Epsilon,. 2024)

Earthquake data. Seismicity can be classified into two categories: (1) historical seismicity pertains to events
predating 1900 and relies on historical sources, primarily comprising macro-seismic intensity data; (2)
instrumental seismicity encompasses seismic events occurring after 1900, leveraging measurements from
seismographs and accelerographs. These instruments provide crucial seismic indices and factors, including
macro-seismic intensity data. Various organizations, such as the National Observatory of Athens, the
Departments of Geophysics at the National and Kapodistrian University of Athens, the Aristotle University of
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Thessaloniki, the University of Patras, and the Earthquake Planning and Protection Organisation, furnish data
on past events. This data encompasses essential factors such as magnitude, focal depth, epicenter location,
earthquake generation mechanisms, and shake maps detailing indices like peak ground acceleration, peak
ground velocity, instrumental intensity, and macro-seismic intensity. Armed with this information,
stakeholders can gain a comprehensive understanding of the seismic history of a particular area, evaluate
the potential for similar or even more intense future events, and devise appropriate plans accordingly.

Seismicity can be divided in two categories: (1) historical seismicity®> which refers to past events prior to
1900 and relies on historical sources and consists mainly of macro seismic intensity data, and instrumental
seismicity®®. Data that refers to seismic events after 1900, rely on measurements from seismographs and
accelerographs, which provide data regarding crucial seismic indices and factors. Macro-seismic intensity
data are also available. Different entities, such as the National Observatory of Athens, the Departments of
Geophysics of the National and Kapodistrian University of Athens, the Aristotle University of Thessaloniki,
the University of Patras, and the Earthquake Planning and Protection Organisation, provide data related to
past events. These data include crucial factors i.e., magnitude, focal depth, epicentre location, earthquake
generation mechanisms, shake maps that include indices such as peak ground acceleration, peak ground
velocity, instrumental intensity, and macro-seismic intensity. Through this information, stakeholders can
have a clear picture and understanding of the seismic past of a specific area, assess the potential for similar
or even stronger future events, and apply their plans accordingly. Above data are mapped on a GIS to provide
a visual understanding of the areas which are more prone to seismic activity. A time slider can be added to
the map to give users the possibility to filter data by time easily and efficiently (Figure 8).
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Figure 8: Seismic Centres on GIS (Epsilon, 2024)

Geological Data: The Hellenic Authority of Geological and Mineral Surveys, along with other relevant
organizations, can furnish geological maps detailing the geological and tectonic characteristics of a region.
Additionally, national-level maps depicting active seismicity provide insights into geological formations and
active faults capable of triggering earthquakes.

Information on Critical Infrastructures (Cl): Analogous to scenarios involving wildfires, data pertaining to Cl
are of importance and should be integrated into the Scenario Coordination and PANTHEON Decision Tool
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(SCDT). Precise Cl locations, interdependencies among different infrastructures, and estimates regarding
the number of households affected in case of disruptions are crucial for all stakeholders involved.

Geo-tagged Aerial Cartography: Unmanned Aerial Vehicles (UAVs) can be deployed to synchronize current
aerial imagery with geographical coordinates, facilitating precise mapping of land features.

Information on Operational Resources: Comprehensive data concerning available operational vehicles and
resources such as UAVs and ambulances play a pivotal role in enhancing coordination during response
operations.

4.1.2 VIENNA DEMONSTRATOR

The Vienna Demonstrator considers: (1) Heatwaves, and (2) City fires.
4.1.2.1 Vienna Heatwaves

Heatwaves occur during the summertime, and a significant part of the resources is going to be either
unavailable (personnel vacations) or practically inactive (ambulances which cannot be moved due to lack of
the appropriate personnel). In this case the simulation of a disaster scenario is rather straight forward
because all the involved parameters are known in advance. As such, we can make the scenario as strict as
possible, based on the worst-case consequences anticipated, to measure the reaction of the first responders.
Again, GIS can help in this scenario by providing all the necessary information available at near to real time,
as weather data from satellite imagery (Figure 9).
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Figure 9: Weather data from satellite imagery, Vienna

4.1.2.2 Vienna wildfire caused by a cyber-terrorism attack

Vienna also faces the potential risk of wildfires triggered by man-made events, such as a “cyber-attack”
targeting critical infrastructure like a power plant. A cyber-attack on a power plant could ignite a fire capable
of spreading rapidly through the surrounding forested areas, including the outskirts of Vienna. This scenario
highlights the interconnectedness of infrastructure vulnerabilities and environmental risks, underscoring the
need for comprehensive disaster preparedness and response strategies.

By selecting this scenario for simulation exercises, stakeholders can evaluate and enhance their readiness to
address both natural and man-made disasters effectively. The choice of a cyber-terrorism allows for the
exploration of cascading effects and interagency coordination in response to unexpected events. Through
collaborative training exercises involving first responders, healthcare providers, law enforcement agencies,
municipal authorities, infrastructure providers, and media representatives, stakeholders can improve their
coordination and cooperation in managing complex disaster scenarios.

While the initial focus may be on heatwaves and cyber-triggered wildfires, the development of final scenarios
will be contingent on the complexity of the simulations and the available project timeline. Deliberate
consideration of cascading effects and the potential exclusion of certain elements may be necessary to
ensure the feasibility of the pilot project in Vienna within the project's timeframe. Ultimately, the aim is to
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leverage the digital twin platform to strengthen preparedness, response, and resilience across various
disaster scenarios in Vienna and beyond.

Note: As of today, there haven't been any reported instances of a cyber-attack directly triggering a wildfire
or fire in Vienna. However, the scenario might be plausible, highlighting potential risks associated with
attacks on critical infrastructure and their cascading effects on the environment and public safety. Thus, the
risk of such an event cannot be completely discounted and will be analysed evaluated by PANTHEON.

4.2 DATA PROCESSING

4.2.1 TYPES OF DATA

PANTHEON can leverage two primary methodologies on data processing: (1) batch and (2) stream. Each
methodology possesses distinct characteristics and is suited for handling different types of data, such as
volume and velocity considerations. For instance, PANTHEON may employ batch processing tools,
methodologies, and workflows to execute machine learning (ML) algorithms to analysing historical data in
batches. This approach could involve GIS, weather data, or other input streams, allowing for the identification
of trends and patterns that can support disaster simulation. Conversely, PANTHEON could utilize stream data
processing tools and workflows to handle real-time data streams, such as those from Copernicus or UAV
sources. In this scenario, ML algorithms will analyse data in real-time, providing valuable insights to feed into
the Scenario Coordination and Decision Tool (SCDT) simulation models and decision support components.

4.2.1.1 Batch Processing

Batch processing serves as a foundational technique in data processing, particularly for efficiently managing
large datasets. The method involves executing repetitive data tasks in bulk on a scheduled basis. Tasks such
as backups, filtering, and sorting can be computationally intensive if processed individually. Therefore, data
systems handle these tasks collectively in batches, typically during periods of reduced computational demand
such as during off-peak hours or overnight. The typical flow of batch processing is illustrated in Figure 10.
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Figure 10: Batch Processing flow [37]

4.2.1.2 Tools & Frameworks

In recent years, batch processing tools evolved significantly delivering a range of functionalities from
distributed computing frameworks to workflow orchestration platforms. Apache Hadoop32 is considered a
prominent tool in batch processing since its distributed file system (HDFS) and its MapReduce programming
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model enables the processing of large datasets across a cluster of computers. It has been widely adopted in
several industries for its scalability and fault tolerance®.

Another prominent tool is Apache Spark*® which supports in-memory processing and facilitates the
development of complex data processing workflows*!. Apache Flink*? is another framework that provides
features such as event-time processing and exactly once semantics. It can handle both real-time (see next
section) and batch data processing tasks**. Apache Airflow** is an open-source platform used to configure
complex business processes. The defined workflows need to be Directed Acyclic Graphs (DAG) which enables
the definition and execution of workflows with dependencies and scheduling capabilities. Thus, has gained
popularity for its flexibility and extensibility®.

Another tool known for its distributed SQL query engine, Presto*® is employed for interactive analytics and
batch processing. It efficiently processes large datasets stored in various data sources, including Hadoop
Distributed File System (HDFS), Apache Cassandra. Presto's ability to perform federated queries across
multiple data stores enhances its versatility*’. Apache Storm® has evolved as a distributed stream processing
framework to support both stream (see next section) and batch processing. Recognized for its low-latency
capabilities, Storm is ideal for workloads requiring real-time data processing®. It provides a fault-tolerant
and scalable solution, making it suitable for diverse use cases®°.

Apache Beam®! takes a unified approach to batch and stream processing, by offering portability across
different runtimes and simplifying the development of data processing pipelines. It provides a high-level API,
enabling users to express their data processing logic concisely®2. Apache NiFi*® focuses on data integration
and workflow automation and excels in orchestrating and managing data flows. Its user-friendly interface
facilitates the design of complex data workflows, making it a valuable tool in modern data architectures®.
NiFi's capabilities extend to both batch and streaming scenarios, providing flexibility in handling diverse data
processing requirements.

4.2.1.3 Batch data processing methodologies

Batch data processing methodologies evolved significantly, benefiting from new techniques such as Extract,
Transform, Load (ETL) and MapReduce to increase data processing efficiency and scalability. These two
techniques are briefly described below.

e The ETL (Extract, Transform, Load) process has three main steps; (1) data is collected from a variety of
sources, (2) data is modified to meet the needs of the research. The modified data is transferred to the
specified system. ETL processes have been shown to improve data quality and accuracy as noted in [3].
Several works [4] have highlighted the importance of productivity in ETL processes which reduces the
need for manual intervention, improves accuracy and increases overall productivity. Additionally, one of
the most important aspects of ETL is data quality assurance. In [5] the author emphasises that ETL
processes use reliable techniques to clean and validate data, ensuring accuracy and reliability for
subsequent analysis.

e Googleintroduced MapReduce, a programming model for processing and generating extensive datasets.
By breaking down tasks into smaller tasks, processing concurrently, and combining results, MapReduce
dramatically increases data processing speed and scalability [6]. Notably, MapReduce has fault tolerance
as highlighted in [7]. To ensure the reliability of the quantitative data processing, the MapReduce
algorithm provides a fault-tolerant reconfiguration in case of node failures. A well-known framework that
uses MapReduce is Hadoop.
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4.2.1.4 Best Practices

Batch data processing incorporates a variety of best practices designed to improve performance, accuracy,
and scalability across large amounts of data. An important factor is the adoption of automated data
processing workflows, which increase the overall efficiency of batch processes [3]. Automation reduces risk
associated with manual processes, reduces errors, and increases repeatable capabilities [4]. It is considered
important to ensure data quality, with best practices encouraging comprehensive data cleaning and
validation processes during the extraction, transformation, and loading (ETL) process [5]. Maintaining high
levels of data quality facilitates downstream analysis and decision making. In addition, parallel processing is
considered a good practice, especially in the case of MapReduce methods [6].

Parallel processing, achieved through mapping and step reduction, makes it easier to distribute computations
across clusters, greatly increasing processing speed and scalability. Fault tolerance is an important factor in
batch data processing, especially the use of MapReduce techniques [7]. MapReduce design principles include
fault-tolerant mechanisms, which ensure that the process is repeated in the event of node failure. This
approach increases the reliability of large data processing systems. Ongoing research focuses on continuously
optimising and improving batch data processing techniques, solving performance challenges, and exploring
algorithmic improvements [8].

4.2.1.5 Stream Processing

This subsection offers a thorough overview of tools, methodologies, best practices, frameworks, and other
pertinent aspects associated with real-time processing. Stream processing entails the immediate analysis
and management of data as it is generated, as depicted in Figure 11. Stream processing implies operating
within predefined and non-negotiable time constraints, analysing data upon its arrival, and being
characterized as live analysis. This live analysis can be performed in real-time to avoid jeopardizing other
processes by consuming excessive computing resources.
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Figure 11: The Stream Processing flow [55]

Stream processing methodologies play an important role in real-time data handling:
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e Lambda Architecture proposed in [14], combines batch and stream processing to ensure accuracy and
fault tolerance. Lambda Architecture consists of three layers: Batch Layer, Speed Layer, and Serving
Layer. The Batch Layer handles historical data, performing complex computations and generating batch
views. The Speed Layer processes real-time data, producing incremental updates. The Serving Layer
merges results from both layers, ensuring a unified view. This dual-layer architecture provides fault
tolerance and enables analytics at scale [12], [15].

e Microservices architecture further enhances real-time capabilities by breaking down applications into
modular, independently deployable services. Another notable methodology in stream data processing
involves leveraging Data Stream Processing (DSP) techniques. DSP focuses on real-time data processing,
employing specific methodologies for capturing and analysing relevant data in a streaming fashion [16].
Real-time analytics, an integral part of DSP, involves the immediate extraction of insights from moving
data, ensuring timely decision-making.

4.2.1.7 Best Practices in stream processing

Achieving high efficiency and stability in stream processing requires adherence to proven methods. By
applying event-driven architectures, where actions are triggered by immediate events, one can significantly
improve responsiveness [17]. Additionally, incorporating Continuous Integration and Continuous
Deployment (Cl/CD) principles guarantees rapid and accurate deployment of real-time applications [18]. The
dynamic nature of stream data processing involves continuously examining rapidly produced data, requiring
meticulous methodologies to extract valuable insights. In today's stream data processing, the significance of
real-time analytics cannot be overstressed. Streams demand swift action to support timely decision-making.
To tackle the temporal complexities inherent in streaming data analysis, approaches such as event time
processing and watermarking have been devised [19-20]. Machine learning plays an important role in stream
data analysis. An advanced algorithm enables real-time detection of patterns and anomalies, increasing the
predictive capability of the system [21]. In addition, integrating edge computing is essential to ensure
efficient data handling close to the data source, reduce latency, and for bandwidth utilisation [22]. Robust
fault handling mechanisms and inspection techniques improve system stability and reduce the impact of
failures [19]. Furthermore, scalability is achieved through parallelization and distributed processing, including
accommodating ever-increasing volumes of streaming data. Given the sensitivity of real-time data, security
is a key and must be considered in streaming data processing. Encryption and authentication measures
comply with modern cybersecurity standards, preserving the integrity and confidentiality of transmitted
data.

4.2.2 DATA PROCESSING TECHNOLOGIES

4.2.2.1 Cloud-Based Big Data Processing

Within PANTHEON, technical partners will harness cloud resources to expedite the software development
and deployment lifecycles. Within the domain of data processing, leveraging cloud-based big data processing
has emerged as a fundamental strategy for efficiently and economically managing large datasets. This section
delves into the essential technologies, tools, methodologies, techniques, mechanisms, and frameworks
deployed in cloud environments for processing big data. These resources could be leveraged by technical
partners throughout the development and deployment phases of the PANTHEON platform.

4.2.2.2 Cloud Processing Technologies

In the last decade cloud data processing technologies have rapidly evolved, with the tools and frameworks
mentioned in 4.2.1.1 and 4.2.1.2 being incorporated in cloud providers’ suites of tools. A common technology
found in cloud environments for data management is distributed storage. Technologies such as Apache
Hadoop Distributed File System (HDFS) and Apache Cassandra provide fault-tolerant storage at scale [23].
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Object storage services such as Amazon S3 and Google Cloud Storage provide storage for large datasets with
durability and accessibility. Another technology is cloud computing services.

Cloud providers offer advanced computing services optimised for big data processing. Apache Spark, a
distributed computing framework, is widely accepted for in-memory processing and analytics and offers high
speed and ease of use [23]. Additionally, cloud-native services such as Amazon EMR, Google Cloud Dataproc,
Amazon EC2, Google Compute Engine, or Azure Virtual Machines simplify data system deployment and
management and provide dedicated computing services for large data processing in parallel [24].

Another emerging technology in cloud environments is serverless computing. This technology allows
developers to focus on code without maintaining the underlying infrastructure. Technologies such as AWS
Lambda and Azure Functions enable event-driven computing, automatically scaling resources based on
demand [23]. Serverless architectures increase the speed and cost-effectiveness in processing variable
workloads [25]. Additionally, common technologies entail data scheduling and workflow management.
Apache Airflow and Apache NiFi are key components for orchestrating robust data workflows in cloud-based
big data applications. They enable data migration, transformation and scheduling efficiency, ensuring
consistency with data sources and destinations [23-25].

Finally, contemporary tools include advanced analytics and machine learning. Cloud providers offer managed
services for advanced analytics and machine learning. Google Cloud's BigQuery ML and Amazon SageMaker
simplify the development and deployment of machine learning models on large datasets [24]. TensorFlow
and PyTorch are widely used frameworks for distributed machine learning training on cloud platforms [25].

4.2.2.3 Cloud Tools & Frameworks

Cloud-based data processing tools essentially encompass those previously mentioned, tailored and
integrated for cloud environments. Below is a non-exhaustive list of several tools. One prominent cloud-
based data processing tool is Apache Spark on Cloud. Utilizing Apache Spark on cloud infrastructures (e.g.,
Amazon EMR, Google Dataproc) enables distributed data processing with its powerful in-memory
computation capabilities. Additionally, cloud-based Hadoop offerings (e.g., Amazon EMR, Azure HDInsight)
facilitate distributed processing of large datasets using tools from the Hadoop ecosystem, including
MapReduce, Hive, and Pig.

Furthermore, technologies like Apache Kafka and cloud-native solutions (e.g., AWS Kinesis, Azure Stream
Analytics) support real-time stream processing, crucial for time-sensitive applications. Cloud-based machine
learning frameworks, such as TensorFlow on platforms like Google Al Platform, enable scalable training and
deployment of machine learning models. Lastly, serverless frameworks (e.g., AWS Serverless Application
Model, Azure Functions) abstract infrastructure management, allowing developers to focus on writing code,
thus enhancing productivity.

4.2.2.4 Edge Data Processing

While PANTHEON's primary focus lies outside of edge data processing, it may prove advantageous for certain
PANTHEON partners contributing data to the platform to explore and employ specific techniques, tools, or
frameworks tailored for edge data processing. This approach aims to optimize the format, structure, and
volume of data transmitted over the Internet, thereby minimizing resource utilization and enhancing
transmission rates. Edge processing stands as a pivotal component within modern data processing
technologies, decentralizing computational tasks and reducing latency by processing data in close proximity
to its source. This section provides an overview of key elements, techniques, and technologies intrinsic to
edge data processing, offering insights into their potential applicability within the context of PANTHEON.
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Although PANTHEON is not focused on edge data processing, it could be beneficial for specific PANTHEON
partners that offer data to the PANTHEON platform, to consider and utilise specific techniques, tools, or
frameworks for edge data processing to optimise the format, shape and volume of data transmitted through
the Internet, minimising resource utilisation and speeding up transmission rates. Edge processing is a pivotal
aspect of modern data processing technologies, decentralising computational tasks, and reducing latency by
processing data closer to the source.

4.2.2.5 Edge data processing Technologies, Tools, Frameworks

Several technologies contributed to edge data processing within the last decade, with the technological area
witnessing big technological advancements. Notably, the proliferation of Internet of Things (IoT) devices has
necessitated green and localised data processing at the network's far edge and numerous technologies
contribute to this paradigm shift.

Edge computing leverages the abilities of devices closer to data sources, lowering latency and improving
responsiveness. Fog computing extends this concept by introducing intermediary nodes between edge
devices and centralised cloud servers, fostering a hierarchical approach to data processing. In this landscape,
technologies such as Apache Kafka®® and MQTT (Message Queuing Telemetry Transport)®’ serve as robust
messaging protocols, ensuring seamless communication between edge devices and central servers. These
protocols prioritise low latency, a crucial requirement for time-sensitive applications. Another noteworthy
technique is edge analytics, which involves processing data on local devices or gateways. This approach
reduces the reliance on centralised cloud servers, offering benefits (e.g., lower latency, improved privacy).

Studies indicate the increasing adoption of edge analytics in applications such as video surveillance and
industrial loT. Platforms such as Microsoft Azure loT Edge and AWS loT Greengrass empower edge devices
to perform analytics locally, optimising bandwidth usage. Microservices architectures, implemented through
tools such as Docker®®, k3s°° and Kubernetes®, enable modular and scalable edge applications. This facilitates
the deployment and management of containerized services, promoting flexibility and ease of integration.

As a commercial example, Microsoft's Azure loT Edge®! framework empowers developers to deploy
containerized applications to edge devices seamlessly. Machine learning (ML) at the edge (Edge Al) has
gained prominence, with frameworks such as TensorFlow Lite®? and PyTorch® providing lightweight
implementations for edge devices. This empowers devices to perform inferencing locally, reducing the need
for constant communication with central servers. Edge databases, exemplified by Amazon DynamoDB® and
SQLite®®, meet the unique challenges of constrained environments. These databases are designed for
efficient storage and retrieval, ensuring optimal performance on resource-limited edge devices.

Moreover, edge orchestration frameworks such as OpenStack® and Apache OpenWhisk®’ streamline the
management of edge resources. These frameworks enable the dynamic allocation and deallocation of
computing resources, adapting to the fluctuating demands of edge applications. Furthermore, the
emergence of 5G/B5G technology has extensively impacted edge data processing capabilities. The high data
transfer rates and low latency of 5G/B5G networks enable more efficient communication between edge
devices, enhancing overall performance of edge computing solutions. Finally, research has explored the
integration of serverless computing at the edge, contributing to resource optimization and efficient execution
of functions on edge devices.

4.2.3 DATA INTEGRATION & FUSION

4.2.3.1 Integrating Multisource Data

In the framework of the PANTHEON Smart City Digital Twin environment, multi-source data integration
encompasses the process of amalgamating and harmonizing diverse and heterogeneous data from various
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input sources within the project. This amalgamation aims to construct a unified and comprehensive
representation within the digital twin, mirroring the physical attributes, processes, and behaviors of the
target cities, Athens and Vienna, in real-time. The integration of data from multiple sources is pivotal in
crafting an accurate and holistic digital twin, thereby facilitating simulations and informed decision-making
to augment overall urban sustainability.

Regarding sensor networks and in-situ loT devices, data integration entails consolidating data from an array
of sensors dispersed throughout the target cities. These sensors encompass environmental, temporal, traffic,
and infrastructure monitoring sensors. Through data integration, real-time insights into city behavior and
operations can be gleaned. Simultaneously, the integration of geospatial data, including maps, satellite
imagery, data captured from UAV sensors, and GIS layers, enables the spatial representation of the cities
within the digital twin model. This integration furnishes the architecture with precise positioning and
movement data, fundamental for comprehending mobility patterns and transportation systems.

Furthermore, augmenting the aforementioned architecture involves the integration of real-time data
streams from social sources, emergency and event monitoring public services. This integration empowers
the digital twin to capture individual citizen or community engagement, facilitating social planning features
and enabling dynamic responses to unfolding events and disasters with heightened transparency.

The integration of multi-source data can be classified into two main approaches: (1) the data warehouse
approach and (2) the mediator approach as illustrated in Figure 12 (Xie et al., 2022).
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Figure 12: Integration approaches of multi-source data (Xie et al. [26])

The data warehouse approach involves consolidating all data sources into a centralized data warehouse
while implementing fusion, cleansing, customization, and reformatting operations on the data. This approach
offers the advantage of readily accessible and semantically consistent data, thanks to the fusion and cleansing
operations performed before storing the data in the warehouse. However, there are instances where
ingesting all data into a persistent location is impractical due to factors such as ownership issues, increasing
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data size, storage overhead, and scaling challenges. To address these obstacles, the mediator approach can
be employed.

In contrast to integrating all data into a persistent location, the mediator approach enables fetching
necessary data directly from their original sources using appropriate wrapper aggregators, as outlined in the
design deliverables of the Pantheon project (D3.1 and D3.3). This approach offers the advantage of data
autonomy, allowing additional data to be easily incorporated into the digital twin model on-demand.

Research suggests that PANTHEON could adopt a hybrid approach for implementing multi-source data
integration, combining the strengths of both the data warehouse and mediator approaches proposed by Xie
et al. (2022). It also elucidates the technologies and methods that the proposed integration implementation
in Pantheon should encompass. Critical methods include data fusion techniques and preprocessing,
particularly data aggregation, normalization, and transformation, to harmonize heterogeneous data into a
standardized format, ensuring consistency and interoperability.

Processing data closer to each data source via an aggregator wrapper can help reduce latency and enhance
the efficiency of data integration, particularly for time-sensitive applications. Additionally, employing
ontologies and standardized data formats ensures semantic interoperability, enabling different systems to
comprehend and interpret shared information. Furthermore, data integration through Application
Programming Interfaces (APIs) facilitates communication and data exchange between Pantheon's various
systems, promoting interoperability among the digital twin's applications and services. As noted by Raes et
al. (2021), individual models integrated through APIs within PANTHEON can collectively form a cloud of
models capable of conducting what-if analyses related to disaster, risk, and emergency management.

4.2.3.2 Fusion Algorithms for Comprehensive Insights

According to Liggins et al. (2017), information fusion is defined as "the study of efficient methods for
automatically or semi-automatically transforming information from different sources and different points in
time into a representation that provides effective support for human or automated decision-making." In the
context of PANTHEON, this definition underscores the critical role of SCDT data fusion algorithms in
synthesizing and integrating heterogeneous data from diverse sources to offer comprehensive insights into
the functioning of the pilot cities, Athens and Vienna. Overarching objective is to create a unified
representation that accurately mirrors the real-time status and dynamics of these urban systems. The
effective implementation of SCDT data fusion algorithms necessitates a multidisciplinary approach,
leveraging expertise in data science, machine learning, computer vision, and domain-specific knowledge
pertaining to the project's pilot cities. These algorithms play a pivotal role in transforming diverse data into
actionable insights, thereby enhancing the efficiency, sustainability, and resilience of Pantheon's proposed
digital twin model.

According to De et al. (2017), key data fusion techniques that PANTHEON could leverage include semantic
reasoning and fusion through correlation. Semantic reasoning can be employed to map relational datasets
and monitoring data streams, integrating them with match filters to enable context-aware data fusion. This
entails algorithms comprehending the context of sensor readings, user interactions, and environmental
conditions, while adapting to changes in the urban environment and accommodating new data sources,
technologies, and evolving digital twin dynamics. Fusion through correlation encompasses statistical
methods, potentially augmented by machine learning algorithms, to calculate the correlation between
numerical data streams. For instance, this technique could involve combining community-related social data
streams with sensor data within Pantheon's digital twin model. Optionally, machine learning analytics
algorithms could be employed to develop predictive models forecasting future emergency events based on
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historical and real-time data. Separate match filter and pattern recognition algorithms can detect anomalies
orirregular patterns in the data, signalling potential disaster events or associated risks that warrant attention.

Lastly, according to Kaur et al. (2020), decision support mechanisms encompass prediction algorithms that
further enhance insights through data fusion. Information flow from raw data to high-level decision-making
is facilitated by sensor-to-sensor, sensor-to-model, and model-to-model fusion. For instance, the output of
data fusion algorithms can be directly integrated into decision support systems to interpret insights.

4.3 DATA ANALYSIS

4.3.1 VISUALIZATION & NOTIFICATIONS

Smart City Digital Twins generate vast amounts of data, and effective analysis, visualization, and notifications
are crucial for transforming this data into actionable insights. Integrating all these elements into PANTHEON
modelled cities empowers stakeholders to make informed decisions, respond to events in real-time, and
enhance the overall efficiency and liveability of the proposed architecture.

A variety of visualization elements can be incorporated, primarily interactive dashboards providing a visual
summary of key performance indicators. These dashboards enable PANTHEON stakeholders to monitor the
pilot cities' status in real-time, enhancing user engagement and understanding. Geospatial maps and overlays
represent another essential visual element, offering insights into geographical data within a spatial context
and highlighting location-specific patterns and trends concerning PANTHEON pilot cities. Limited 3D
visualization can also be included, representing the infrastructure, buildings, and terrain of Pantheon's pilot
cities for a more immersive experience.

Time-series charts visualize data changes over time, facilitating the identification of temporal patterns in
various metrics. A combination of geospatial and temporal data can inform the creation of heat maps,
representing data density in a spatial context and aiding in the identification of areas with high or low activity,
congestion, or resource usage.

Complementing the data analysis visualization modules, notifications play a crucial role in creating a dynamic
and responsive ecosystem for PANTHEON. Event detection is paramount, with the automated PANTHEON
system capable of detecting events or anomalies in the data and triggering notifications when predefined
thresholds are crossed. These alerts may include traffic incidents, environmental issues, sensor detections,
or security-related alerts, ensuring timely notification of PANTHEON stakeholders and users via email, SMS,
or mobile applications. Mobile applications can leverage push notifications to instantly inform users about
important updates or emergencies, providing contextual information about the event's location, severity,
and potential impact. Customizable notification preferences based on roles, responsibilities, and areas of
interest enhance user experience and decision-making.

Furthermore, integrating notifications via APIs with existing communication systems, such as emergency
services or public address systems, ensures a coordinated response to critical events and emergencies.
Finally, combining notifications with logging enables the analysis of historical notifications, facilitating the
identification of recurrentissues, optimization of response strategies, and enhancement of Pantheon's digital
twin model's overall resilience.

4.3.2 LOGS

An essential feature of a digital twin is its capability to replay simulations, enabling end-users to gain deep
insights into the sequence of events that lead to a particular outcome. Repetition-based understanding is a
well-known learning process, and the digital twin serves as a new tool to facilitate this process.
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To execute a simulation replay effectively, the digital twin must meticulously track all events contributing to
the disaster scenario's impact. These events may originate from data sources or interactions introduced by
end-users. Furthermore, the timing of events can significantly influence their effects on the scenario during
replay, compared to their impact during the initial simulation.

This necessity underscores a new data requirement for the digital twin: the development of a robust log
system capable of storing the chronological sequence of all events affecting the simulation. Fortunately,
various tools already exist to support log generation, ranging from simple methods that write text messages
to local text files (e.g., using the Java Logger module) to more sophisticated cloud-based solutions capable of
storing events in cloud data servers (such as Apache Kafka, Amazon CloudWatch, New Relic, WandB,
Dynatrace, Mezmo/LogDNA, etc.).

These tools not only store system logs but also enable real-time monitoring of system health without
compromising functionality or performance. Cloud systems offer additional advantages, including full
scalability and the ability to distribute and duplicate data, thereby enhancing reliability in the event of partial
failures or full-scale disasters.

4.3.2.1 Post - Processing

In addition to enabling simulation replay, logs serve as valuable resources for post-processing, facilitating a
comprehensive analysis of key aspects within a scenario. Post-processing involves examining all events to
gain a global perspective on significant occurrences during the simulation. For example, analysing data
elements from each source, identifying outliers, and assessing variability in data values can all be performed
at the conclusion of a scenario simulation. Additionally, post-processing enables scenario comparisons, such
as evaluating resource requirements, assessing differences in damages between runs, and determining the
duration needed to return to nominal conditions for each scenario option.

By systematizing event log capture and automating post-processing with distributed services, end-users can
quickly obtain relevant and useful feedback about scenario runs within minutes. This post-processing phase
yields objective indicators and measures that serve as the basis for scenario results. Subsequently, these
objective indicators guide post-scenario discussions, complementing subjective assessments. For instance, a
thorough analysis of simulation results during post-processing, followed by fruitful discussions, may lead to
proposals for updating emergency plans with new actions or altering their prioritization.

Most tools providing cloud log services also include post-processing capabilities. For example, in Apache
Kafka, the log system transforms into an event-driven distributed environment, enabling the creation of a
client and service ecosystem that operates in parallel with streams of logs organized into different topics.
Software for Data Analytics (e.g., Tableau, Data Bl, Knime, RapidMiner, etc.), as well as ad-hoc programs,
spreadsheets, or data warehouses, are all suitable for post-processing data logs obtained from digital twin
simulations.

4.4 DATA DELIVERY SCHEMES

4.4.1 ATHENS SCENARIO

For Athens, two disaster scenarios will be considered, each with associated technologies:

1. A-1: The wildfire scenario for which all agreed-upon techniques will be utilized.
A-2: The earthquake scenario for which all agreed-upon techniques will be employed, with the exception
of Weather Stations. This exception is due to the impracticality of offering any useful data from them,
resulting in a simplified simulation.
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For Vienna, two disaster scenarios will be considered, each with associated technologies:

1. V-1: The heatwave scenario, for which all agreed-upon techniques will be utilized, except for UAV
swarms, which are impractical and provide no assistance in this particular case. Consequently, the
simulation for this scenario will be simplified.

2. V-2: The man-made disaster scenario involves a terrorist attack on a power plant, resulting in an
explosion and subsequent fire spreading to a nearby wooded area, causing a forest fire that extends to
the outskirts of Vienna. This scenario is more complex. All agreed-upon techniques will be employed to
effectively depict it, including a cascading effect that encompasses the wildfire scenario simulated for
Athens.

4.4.3 ON DEMONSTRATORS DATA

At this stage, it remains premature to delineate the precise data delivery schemes for the two pilot cases,
despite finalizing the selection of technologies and tools. The system architecture is still in development, with
efforts focused on ensuring that all anticipated data will be obtainable from identified sources. However, in
the event that not all expected data becomes available, adjustments may be required to accommodate what
is accessible for integration into the final PANTHEON Platform. Nonetheless, based on discussions during the
3rd General Assembly meeting in Malta (Jan 2024), there appears to be consensus that the most probable
format for data delivery schemes is JavaScript Object Notation (JSON). JSON is a standard text-based format
utilized for representing structured data, based on JavaScript object syntax, commonly employed for
transmitting data in web applications, such as sending data from the server to the client for display on a web

page.
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5 CONCLUSIONS

The objective of Deliverable D3.4, titled "PANTHEON Data Delivery Scheme for Community-Based Disaster
Risk Management" is to establish the most suitable format for the Data Delivery Scheme within the two pilot
areas, Athens and Vienna. This endeavour requires the acquisition and management of data from six distinct
streams of origin: Satellites, In-Situ sources, Infrastructure, Traffic, UAVs, and Community inputs. The aim is
to achieve high performance, full automation, ease of use, low maintenance, and responsive service.

To accomplish this goal, various types of data were defined based on their characteristics, processing
requirements, integration methods, and analysis needs. This comprehensive assessment aims to determine
the optimal data delivery scheme for both pilot cases.

Based on discussions held during the 3rd General Assembly in Malta, it was concluded that the optimal data
delivery scheme should utilize the JavaScript Object Notation (JSON) format.
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